dc.contributor.author |
Aizicovici, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Staicu, V |
en |
dc.date.accessioned |
2014-03-01T01:31:32Z |
|
dc.date.available |
2014-03-01T01:31:32Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1230-3429 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19807 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77956459957&partnerID=40&md5=c908d9c03cf54e817adac1ee442bf165 |
en |
dc.subject |
C-condition |
en |
dc.subject |
Critical groups |
en |
dc.subject |
Morse theory |
en |
dc.subject |
Mountain pass theorem |
en |
dc.subject |
P-superlinearity |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
NONTRIVIAL SOLUTIONS |
en |
dc.subject.other |
MULTIPLICITY |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
RESONANCE |
en |
dc.subject.other |
THEOREM |
en |
dc.title |
ON a p-superlinear Neumann p-Laplacian equation |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We consider a nonlinear Neumann problem, driven by the p-Laplacian, and with a nonlinearity which exhibits a p-superlinear growth near infinity, but does not necessarily satisfy the Ambrosetti-Rabinowitz condition. Using variational methods based on critical point theory, together with suitable truncation techniques and Morse theory, we show that the problem has at least three nontrivial solutions, of which two have a fixed sign (one positive and the other negative). © 2009 Juliusz Schauder Center for Nonlinear Studies. |
en |
heal.publisher |
JULIUSZ SCHAUDER CTR NONLINEAR STUDIES |
en |
heal.journalName |
Topological Methods in Nonlinear Analysis |
en |
dc.identifier.isi |
ISI:000269865700007 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
111 |
en |
dc.identifier.epage |
130 |
en |