dc.contributor.author |
Dodos, P |
en |
dc.date.accessioned |
2014-03-01T01:31:32Z |
|
dc.date.available |
2014-03-01T01:31:32Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0002-9947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19809 |
|
dc.subject |
L ∞- spaces |
en |
dc.subject |
Non-universal spaces |
en |
dc.subject |
Schauder bases |
en |
dc.subject |
Strongly bounded classes |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
OPERATORS |
en |
dc.subject.other |
BASES |
en |
dc.title |
On classes of banach spaces admitting ""small""; universal spaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1090/S0002-9947-09-04913-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1090/S0002-9947-09-04913-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We characterize those classes C of separable Banach spaces admitting a separable universal space Y (that is, a space Y containing, up to isomorphism, all members of C) which is not universal for all separable Banach spaces. The characterization is a byproduct of the fact, proved in the paper, that the class NU of non-universal separable Banach spaces is strongly bounded. This settles in the affirmative the main conjecture from Argyros and Dodos (2007). Our approach is based, among others, on a construction of L∞- spaces, due to J. Bourgain and G. Pisier. As a consequence we show that there exists a family {Yξ : ξ < ω1 } of separable, non-universal, L∞-spaces which uniformly exhausts all separable Banach spaces. A number of other natural classes of separable Banach spaces are shown to be strongly bounded as well. © 2009 American Mathematical Society. |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
Transactions of the American Mathematical Society |
en |
dc.identifier.doi |
10.1090/S0002-9947-09-04913-7 |
en |
dc.identifier.isi |
ISI:000271831600007 |
en |
dc.identifier.volume |
361 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
6407 |
en |
dc.identifier.epage |
6428 |
en |