HEAL DSpace

On Hadamard stability and dissipative stability of the molecular stress function model of non-linear viscoelasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Voyiatzis, E en
dc.contributor.author Tsenoglou, CJ en
dc.contributor.author Boudouvis, AG en
dc.date.accessioned 2014-03-01T01:31:32Z
dc.date.available 2014-03-01T01:31:32Z
dc.date.issued 2009 en
dc.identifier.issn 0020-7462 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19810
dc.subject Constitutive equation en
dc.subject Dissipative stability en
dc.subject Hadamard stability en
dc.subject Molecular stress function (MSF) theory en
dc.subject Non-linear viscoelasticity en
dc.subject Simple elongation en
dc.subject Simple shear en
dc.subject.classification Mechanics en
dc.subject.other Dissipative stability en
dc.subject.other Hadamard stability en
dc.subject.other Molecular stress function (MSF) theory en
dc.subject.other Non-linear viscoelasticity en
dc.subject.other Simple elongation en
dc.subject.other Simple shear en
dc.subject.other Constitutive equations en
dc.subject.other Elasticity en
dc.subject.other Elongation en
dc.subject.other Energy dissipation en
dc.subject.other Number theory en
dc.subject.other Strain en
dc.subject.other Stresses en
dc.subject.other Thermodynamic stability en
dc.subject.other Three dimensional en
dc.subject.other Viscoelasticity en
dc.subject.other Viscosity en
dc.subject.other Stability criteria en
dc.title On Hadamard stability and dissipative stability of the molecular stress function model of non-linear viscoelasticity en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijnonlinmec.2009.03.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijnonlinmec.2009.03.002 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract We study the stability characteristics of the molecular stress function (MSF) model, i.e.. a molecular constitutive theory for stress that extends the original Doi-Edwards model for linear polymers to the case of branched polymers, by repeating the assumption that the tension in the deformed chain is equal to its equilibrium value. We derive analytical, closed-form conditions for Hadamard stability under general 3-D high-frequency, short-amplitude wave disturbances in bi-quadratic form, which reduce to simple algebraic criteria for the cases of 1-D and 2-D disturbances. Application of the derived conditions in the case of general biaxial extension, which provides a simplified description of many processes encountered in industry and nature, shows that the MSF is Hadamard unstable for strains beyond 2. This casts doubts on its ability in predicting correct elastic response under rapid extensional deformations. The region of instability widens with the strengthening of network connectivity or the alignment strength of the flow. Dissipative stability of the MSF is examined using two necessary criteria: the first and less restrictive criterion requires the stress to be monotonically and unboundedly increasing function of strain in uniaxial elongation and simple shear. The second criterion requires the free energy and the rate of energy dissipation to be bounded functions of deformation. We find that while MSF satisfies the first stability criterion, violates the second, thus revealing thermodynamic inconsistencies in formulating the dissipative terms of the constitutive equation. (C) 2009 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Non-Linear Mechanics en
dc.identifier.doi 10.1016/j.ijnonlinmec.2009.03.002 en
dc.identifier.isi ISI:000268362200002 en
dc.identifier.volume 44 en
dc.identifier.issue 7 en
dc.identifier.spage 727 en
dc.identifier.epage 734 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής