dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Rocha, EM |
en |
dc.date.accessioned |
2014-03-01T01:31:33Z |
|
dc.date.available |
2014-03-01T01:31:33Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1578-7303 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19811 |
|
dc.subject |
Critical groups and Morse theory |
en |
dc.subject |
P-Laplacian-like operator |
en |
dc.subject |
Strong deformation retract |
en |
dc.subject |
Superlinear nonlinearity |
en |
dc.subject.other |
ELLIPTIC EIGENVALUE PROBLEMS |
en |
dc.subject.other |
STRONG MAXIMUM PRINCIPLE |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
RESONANCE |
en |
dc.subject.other |
THEOREMS |
en |
dc.title |
On Nonlinear Parametric Problems for p-Laplacian-Like Operators |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF03191850 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF03191850 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We study a nonlinear parametric problem driven by a p-Laplacian-like operator (which need not be homogeneous) and with a (p - 1)-superlinear nonlinearity which satisfy weaker conditions than the Ambrosetti-Rabinowitz condition. Using critical point theory, we show that for every λ > 0, the nonlinear parametric problem has a nontrivial solution. Then, by strengthening the conditions on the operator and the nonlinearity, and using variational methods together with suitable truncation techniques and tools from Morse theory, we show that, for every λ > 0, the nonlinear parametric problem has three nontrivial smooth solutions. © 2009 Real Academia de Ciencias, España. |
en |
heal.publisher |
REAL ACAD CIENCIAS EXACTAS FISICAS NATURALES |
en |
heal.journalName |
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas |
en |
dc.identifier.doi |
10.1007/BF03191850 |
en |
dc.identifier.isi |
ISI:000265502200022 |
en |
dc.identifier.volume |
103 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
177 |
en |
dc.identifier.epage |
200 |
en |