dc.contributor.author |
Gousidou-Koutita, M |
en |
dc.contributor.author |
Kalvouridis, TJ |
en |
dc.date.accessioned |
2014-03-01T01:31:34Z |
|
dc.date.available |
2014-03-01T01:31:34Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19819 |
|
dc.subject |
(N + 1)-Ring-body problem |
en |
dc.subject |
Celestial Mechanics |
en |
dc.subject |
Comparison of numerical methods |
en |
dc.subject |
Newton and quasi-Newton methods |
en |
dc.subject |
Non-linear algebraic equations |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
(N + 1)-Ring-body problem |
en |
dc.subject.other |
Celestial Mechanics |
en |
dc.subject.other |
Comparison of numerical methods |
en |
dc.subject.other |
Newton and quasi-Newton methods |
en |
dc.subject.other |
Non-linear algebraic equations |
en |
dc.subject.other |
Astrophysics |
en |
dc.subject.other |
Mechanics |
en |
dc.subject.other |
Newton-Raphson method |
en |
dc.subject.other |
Number theory |
en |
dc.subject.other |
Numerical methods |
en |
dc.title |
On the efficiency of Newton and Broyden numerical methods in the investigation of the regular polygon problem of (N + 1) bodies |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.amc.2009.02.015 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.amc.2009.02.015 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Numerical methods of finding the roots of a system of non-linear algebraic equations are treated in this paper. This paper attempts to give an answer to the selection of the most efficient method in a complex problem of Celestial Dynamics, the so-called ring problem of (N + 1) bodies. We apply Newton and Broyden's method to these problems and we investigate, by means of their use, the planar equilibrium points, the five equilibrium zones, which are symbolized by A(1), A(2), B, C-2, and C-1 (by order of appearance from the center O to the periphery of the imaginary circle on which the primaries lie) [T. J. Kalvouridis, A planar case of the N + 1 body problem: the ring problem. Astrophys. Space Sci. 260 (3) (1999) 309-325], and the attracting regions of the system. The efficiency of these methods is studied through a comparative process. The obtained results are demonstrated in figures and are discussed. (c) 2009 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematics and Computation |
en |
dc.identifier.doi |
10.1016/j.amc.2009.02.015 |
en |
dc.identifier.isi |
ISI:000265783800012 |
en |
dc.identifier.volume |
212 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
100 |
en |
dc.identifier.epage |
112 |
en |