HEAL DSpace

On the efficiency of Newton and Broyden numerical methods in the investigation of the regular polygon problem of (N + 1) bodies

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gousidou-Koutita, M en
dc.contributor.author Kalvouridis, TJ en
dc.date.accessioned 2014-03-01T01:31:34Z
dc.date.available 2014-03-01T01:31:34Z
dc.date.issued 2009 en
dc.identifier.issn 0096-3003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19819
dc.subject (N + 1)-Ring-body problem en
dc.subject Celestial Mechanics en
dc.subject Comparison of numerical methods en
dc.subject Newton and quasi-Newton methods en
dc.subject Non-linear algebraic equations en
dc.subject.classification Mathematics, Applied en
dc.subject.other (N + 1)-Ring-body problem en
dc.subject.other Celestial Mechanics en
dc.subject.other Comparison of numerical methods en
dc.subject.other Newton and quasi-Newton methods en
dc.subject.other Non-linear algebraic equations en
dc.subject.other Astrophysics en
dc.subject.other Mechanics en
dc.subject.other Newton-Raphson method en
dc.subject.other Number theory en
dc.subject.other Numerical methods en
dc.title On the efficiency of Newton and Broyden numerical methods in the investigation of the regular polygon problem of (N + 1) bodies en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.amc.2009.02.015 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.amc.2009.02.015 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Numerical methods of finding the roots of a system of non-linear algebraic equations are treated in this paper. This paper attempts to give an answer to the selection of the most efficient method in a complex problem of Celestial Dynamics, the so-called ring problem of (N + 1) bodies. We apply Newton and Broyden's method to these problems and we investigate, by means of their use, the planar equilibrium points, the five equilibrium zones, which are symbolized by A(1), A(2), B, C-2, and C-1 (by order of appearance from the center O to the periphery of the imaginary circle on which the primaries lie) [T. J. Kalvouridis, A planar case of the N + 1 body problem: the ring problem. Astrophys. Space Sci. 260 (3) (1999) 309-325], and the attracting regions of the system. The efficiency of these methods is studied through a comparative process. The obtained results are demonstrated in figures and are discussed. (c) 2009 Elsevier Inc. All rights reserved. en
heal.publisher ELSEVIER SCIENCE INC en
heal.journalName Applied Mathematics and Computation en
dc.identifier.doi 10.1016/j.amc.2009.02.015 en
dc.identifier.isi ISI:000265783800012 en
dc.identifier.volume 212 en
dc.identifier.issue 1 en
dc.identifier.spage 100 en
dc.identifier.epage 112 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής