dc.contributor.author |
Pirentis, AP |
en |
dc.contributor.author |
Markatis, S |
en |
dc.contributor.author |
Lazopoulos, KA |
en |
dc.contributor.author |
Lazopoulos, AK |
en |
dc.date.accessioned |
2014-03-01T01:31:34Z |
|
dc.date.available |
2014-03-01T01:31:34Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0044-2267 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19823 |
|
dc.subject |
Bifurcation, stability |
en |
dc.subject |
Constraints |
en |
dc.subject |
Singularity theory |
en |
dc.subject |
Tensegrity |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
ELASTICA SOLUTION |
en |
dc.subject.other |
CELL MECHANICS |
en |
dc.subject.other |
CYTOSKELETON |
en |
dc.subject.other |
STABILITY |
en |
dc.title |
On the singularities of constrained tensegrity systems - Application to a modified T3 model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/zamm.200700152 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/zamm.200700152 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Singularity theory is applied for the study of constrained tensegrity systems. Previous studies have already been performed on non-constrained systems; however, the present one allows for general non-symmetric equilibrium configurations. A modified T3 tensegrity model comprising seven rigid bars, three elastic cables and one rotational spring is considered. The stability of this model is examined performing singularity theory for deformations under conservative quasistatic loading. Critical conditions for branching of the equilibrium paths are defined and their post-critical behavior is discussed. Classification of the simple and compound singularities of the total potential energy function is effected. The theory is implemented into the fold catastrophe of the asymmetric configuration of the modified T3 tensegrity model and an elliptic umbilic singularity for the case of compound branching. It is pointed out that singularity studies with constraints demand a quite different mathematical approach than those without constraints. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
en |
heal.publisher |
WILEY-V C H VERLAG GMBH |
en |
heal.journalName |
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik |
en |
dc.identifier.doi |
10.1002/zamm.200700152 |
en |
dc.identifier.isi |
ISI:000264359800001 |
en |
dc.identifier.volume |
89 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
71 |
en |
dc.identifier.epage |
87 |
en |