HEAL DSpace

Onset of entanglements revisited. Dynamical analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lahmar, F en
dc.contributor.author Tzoumanekas, C en
dc.contributor.author Theodorou, DN en
dc.contributor.author Rousseau, B en
dc.date.accessioned 2014-03-01T01:31:35Z
dc.date.available 2014-03-01T01:31:35Z
dc.date.issued 2009 en
dc.identifier.issn 0024-9297 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19828
dc.subject Dynamic Analysis en
dc.subject.classification Polymer Science en
dc.subject.other Bottom up approach en
dc.subject.other Carbon atoms en
dc.subject.other Chain contours en
dc.subject.other Chain stiffness en
dc.subject.other Chain-length dependence en
dc.subject.other Coarse grained models en
dc.subject.other Coarse Graining en
dc.subject.other Coarse-grained en
dc.subject.other Continuous transitions en
dc.subject.other Dissipative particle dynamics en
dc.subject.other Dynamical analysis en
dc.subject.other Dynamical transition en
dc.subject.other Global dynamics en
dc.subject.other Length scale en
dc.subject.other Long chains en
dc.subject.other Monodisperse systems en
dc.subject.other Nonbonded interaction en
dc.subject.other Parametrizations en
dc.subject.other Polymer chains en
dc.subject.other Polymer dynamics en
dc.subject.other Power law en
dc.subject.other Primitive path en
dc.subject.other Reptation en
dc.subject.other Reptation model en
dc.subject.other Repulsive potentials en
dc.subject.other Rouse model en
dc.subject.other Rouse modes en
dc.subject.other Self-Diffusion en
dc.subject.other Static and dynamic en
dc.subject.other Topological analysis en
dc.subject.other Topological constraints en
dc.subject.other Underlying systems en
dc.subject.other Chain length en
dc.subject.other Chains en
dc.subject.other Dynamics en
dc.subject.other Polymer melts en
dc.subject.other Polymers en
dc.subject.other Mathematical models en
dc.title Onset of entanglements revisited. Dynamical analysis en
heal.type journalArticle en
heal.identifier.primary 10.1021/ma9011329 en
heal.identifier.secondary http://dx.doi.org/10.1021/ma9011329 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In a series of two papers, we study the onset of entanglements and the transition from Rouse-type to reptation dynamics, in the context of dissipative particle dynamics (DPD) simulations of a coarse-grained polymer melt. A set of monodisperse systems with increasing chain length is examined. We consider both static and dynamic aspects of the problem. Part I, the preceding paper (10.1021/ma901131c), presents a topological analysis of our systems. It deals with the continuous transition from unentangled to entangled topology, as chain length increases, at the level of primitive paths (PPs). In part II, this paper, we present the dynamics of our systems, and a comparison between topological and dynamical analysis. We utilize a coarsegrained model of polyethylene, based on the blob (or bead) picture of a polymer chain. The conservative potentials describing bead interactions are derived by a bottom-up approach. Each bead corresponds to 20 carbon atoms. Because of the large coarse-graining level, beads can easily overlap and chain contours can cross each other. We maintain chain uncrossability by introducing a segmental repulsive potential (SRP), adapted to our model. It is demonstrated that suitable parametrization of this potential can reproduce the dynamical transition from Rouse to reptation dynamics. For short chain unentangled systems, we observe a deviation from the pure Rouse behavior, attributed to the presence of chain stiffness, nonbonded interactions, and chain uncrossability, which are not considered by the Rouse model. For long chain systems, global dynamics is typical of reptation. The chain length dependence of viscosity and self-diffusion is described by power laws, with exponents equal to +3.2 and -2.3, respectively. A global and local (Rouse-mode) dynamical analysis, a static topological analysis, and the comparison between them, shows that topological constraints alter polymer dynamics at length scales much shorter than the length scales implied by the reptation model. This is evidenced by a slowing down of Rouse modes, which is maximum at the length scale where the underlying system of interpenetrating PPs appears as a network of topological constraints. © 2009 American Chemical Society. en
heal.publisher AMER CHEMICAL SOC en
heal.journalName Macromolecules en
dc.identifier.doi 10.1021/ma9011329 en
dc.identifier.isi ISI:000270461600035 en
dc.identifier.volume 42 en
dc.identifier.issue 19 en
dc.identifier.spage 7485 en
dc.identifier.epage 7494 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής