dc.contributor.author |
Hasikos, J |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Zervas, PL |
en |
dc.contributor.author |
Markatos, NC |
en |
dc.date.accessioned |
2014-03-01T01:31:35Z |
|
dc.date.available |
2014-03-01T01:31:35Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0378-7753 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19833 |
|
dc.subject |
Fuel cells |
en |
dc.subject |
Hydrogen |
en |
dc.subject |
Meta-modeling |
en |
dc.subject |
Model predictive control |
en |
dc.subject |
Neural networks |
en |
dc.subject |
Optimization |
en |
dc.subject.classification |
Electrochemistry |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.other |
Closed-loop |
en |
dc.subject.other |
Controlled variables |
en |
dc.subject.other |
Fuel cell system |
en |
dc.subject.other |
Integrated optimization |
en |
dc.subject.other |
Look up table |
en |
dc.subject.other |
Meta model |
en |
dc.subject.other |
Meta-modeling |
en |
dc.subject.other |
Nonlinear programming problem |
en |
dc.subject.other |
Operational optimization |
en |
dc.subject.other |
Operational range |
en |
dc.subject.other |
Optimal controls |
en |
dc.subject.other |
Optimal values |
en |
dc.subject.other |
Optimization and control |
en |
dc.subject.other |
Power demands |
en |
dc.subject.other |
Proton exchange membranes |
en |
dc.subject.other |
Radial basis function neural networks |
en |
dc.subject.other |
Simulation model |
en |
dc.subject.other |
Stationary power generation |
en |
dc.subject.other |
Steady-state values |
en |
dc.subject.other |
System response |
en |
dc.subject.other |
System variables |
en |
dc.subject.other |
Cell membranes |
en |
dc.subject.other |
Electrochemistry |
en |
dc.subject.other |
Fuel cells |
en |
dc.subject.other |
Hydrogen |
en |
dc.subject.other |
Linear programming |
en |
dc.subject.other |
Linearization |
en |
dc.subject.other |
Natural language processing systems |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Optimal control systems |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Predictive control systems |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Real time control |
en |
dc.subject.other |
Simulators |
en |
dc.subject.other |
Table lookup |
en |
dc.subject.other |
Model predictive control |
en |
dc.title |
Operational optimization and real-time control of fuel-cell systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jpowsour.2009.01.048 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jpowsour.2009.01.048 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Fuel cells is a rapidly evolving technology with applications in many industries including transportation, and both portable and stationary power generation. The viability, efficiency and robustness of fuel-cell systems depend strongly on optimization and control of their operation. This paper presents the development of an integrated optimization and control tool for Proton Exchange Membrane Fuel-Cell (PEMFC) systems. Using a detailed simulation model, a database is generated first, which contains steady-state values of the manipulated and controlled variables over the full operational range of the fuel-cell system. In a second step, the database is utilized for producing Radial Basis Function (RBF) neural network ""meta-models"". In the third step, a Non-Linear Programming Problem (NLP) is formulated, that takes into account the constraints and limitations of the system and minimizes the consumption of hydrogen, for a given value of power demand. Based on the formulation and solution of the NLP problem, a look-up table is developed, containing the optimal values of the system variables for any possible value of power demand. In the last step, a Model Predictive Control (MPC) methodology is designed, for the optimal control of the system response to successive sep-point changes of power demand. The efficiency of the produced MPC system is illustrated through a number of simulations, which show that a successful dynamic closed-loop behaviour can be achieved, while at the same time the consumption of hydrogen is minimized. © 2009 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Power Sources |
en |
dc.identifier.doi |
10.1016/j.jpowsour.2009.01.048 |
en |
dc.identifier.isi |
ISI:000267561400038 |
en |
dc.identifier.volume |
193 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
258 |
en |
dc.identifier.epage |
268 |
en |