HEAL DSpace

Oxide density distribution across the barrier layer during the steady state growth of porous anodic alumina films: Chronopotentiometry, kinetics of mass and thickness evolution and a high field ionic migration model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Patermarakis, G en
dc.contributor.author Karayianni, H en
dc.contributor.author Masavetas, K en
dc.contributor.author Chandrinos, J en
dc.date.accessioned 2014-03-01T01:31:37Z
dc.date.available 2014-03-01T01:31:37Z
dc.date.issued 2009 en
dc.identifier.issn 1432-8488 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19845
dc.subject Al to oxide lattice transformation en
dc.subject Fluidity en
dc.subject Growth mechanism en
dc.subject Oxide density spectrum en
dc.subject Porous anodic alumina en
dc.subject.classification Electrochemistry en
dc.subject.other Al to oxide lattice transformation en
dc.subject.other Anodising en
dc.subject.other Barrier layers en
dc.subject.other Chronopotentiometry en
dc.subject.other Current efficiency en
dc.subject.other Density distributions en
dc.subject.other Density maxima en
dc.subject.other Electrolyte interfaces en
dc.subject.other Field strengths en
dc.subject.other Fluid materials en
dc.subject.other Growth mechanism en
dc.subject.other High field en
dc.subject.other Initial density en
dc.subject.other Ionic migration en
dc.subject.other Mass balance en
dc.subject.other Mean values en
dc.subject.other Oxide interfaces en
dc.subject.other Porous anodic alumina en
dc.subject.other Porous anodic alumina films en
dc.subject.other Steady state en
dc.subject.other Transport number en
dc.subject.other Alumina en
dc.subject.other Aluminum en
dc.subject.other Aluminum sheet en
dc.subject.other Electrolytes en
dc.subject.other Film growth en
dc.subject.other Fluidity en
dc.subject.other Growth kinetics en
dc.subject.other Optical microscopy en
dc.subject.other Oxide films en
dc.title Oxide density distribution across the barrier layer during the steady state growth of porous anodic alumina films: Chronopotentiometry, kinetics of mass and thickness evolution and a high field ionic migration model en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10008-008-0745-6 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10008-008-0745-6 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract The steady state growth of porous anodic alumina films in oxalate solutions at various conditions was studied by chronopotentiometry, mass balance and optical microscopy methods enabling determination of consumed Al, film mass and thickness, current efficiencies, Al3+ and O2- transport numbers across barrier layer, etc. The film thickness growth rate was found to be proportional to O2- anionic current. A high field ionic migration model was developed. It predicted that, during anodising, the local oxide density across barrier layer rises from 2.6 in Al|oxide to 4.59-5.22 g cm-3 in oxide|electrolyte interface with mean value ≈3.21-3.52 g cm-3. The field strength rises from the first to second interface. The mechanism of Al oxidation near the Al|oxide interface embraces the transformation of the Al lattice to a transient, rare oxide one sustained by field with comparable Al3+ spacing parameter. The oxide near the Al|oxide interface and around the density maximum in the oxide|electrolyte interface are under different levels of electro-restriction stresses. During relaxation, the oxide behaves like a solid-fluid material suppressing the initial density distribution. © 2008 Springer-Verlag. en
heal.publisher SPRINGER en
heal.journalName Journal of Solid State Electrochemistry en
dc.identifier.doi 10.1007/s10008-008-0745-6 en
dc.identifier.isi ISI:000270872000005 en
dc.identifier.volume 13 en
dc.identifier.issue 12 en
dc.identifier.spage 1831 en
dc.identifier.epage 1847 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής