dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Rocha, EM |
en |
dc.date.accessioned |
2014-03-01T01:31:37Z |
|
dc.date.available |
2014-03-01T01:31:37Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19849 |
|
dc.subject |
(p - 1)-superlinear nonlinearity |
en |
dc.subject |
Ambrosetti-Rabinowitz condition |
en |
dc.subject |
Cerami condition |
en |
dc.subject |
Ekeland variational principle |
en |
dc.subject |
Mountain pass theorem |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Positive solutions |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Equations of state |
en |
dc.subject.other |
Landforms |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Variational techniques |
en |
dc.subject.other |
(p - 1)-superlinear nonlinearity |
en |
dc.subject.other |
Ambrosetti-Rabinowitz condition |
en |
dc.subject.other |
Cerami condition |
en |
dc.subject.other |
Ekeland variational principle |
en |
dc.subject.other |
Mountain pass theorem |
en |
dc.subject.other |
p-Laplacian |
en |
dc.subject.other |
Positive solutions |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
Pairs of positive solutions for p-Laplacian equations with sublinear and superlinear nonlinearities which do not satisfy the AR-condition |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2008.07.042 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2008.07.042 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We consider a nonlinear Dirichlet problem driven by the p-Laplacian differential. The right-hand-side nonlinearity, exhibits a (p - l)-sublinear term of the form m(z) vertical bar x vertical bar(r-2)x, r < p (concave term), and a Caratheodory term f (z, x) which is (p - 1)-superlinear near +infinity. However, it does not satisfy the usual Ambrosetti-Rabinowitz condition (AR-condition). Instead we employ a more general condition. Using a variational approach based on the critical point theory and the Ekeland variational principle, we show the existence of two nontrivial positive smooth solutions and then the existence of two nontrivial negative smooth solutions. (C) 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2008.07.042 |
en |
dc.identifier.isi |
ISI:000265451800009 |
en |
dc.identifier.volume |
70 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
3854 |
en |
dc.identifier.epage |
3863 |
en |