dc.contributor.author |
Rigatos, GG |
en |
dc.date.accessioned |
2014-03-01T01:31:37Z |
|
dc.date.available |
2014-03-01T01:31:37Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0018-9456 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19853 |
|
dc.subject |
Extended Kalman filter (EKF) |
en |
dc.subject |
Gaussian filters |
en |
dc.subject |
Industrial robotic manipulator |
en |
dc.subject |
Nonparametric filters |
en |
dc.subject |
Particle filter (PF) |
en |
dc.subject |
Sensor fusion |
en |
dc.subject |
State estimation |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Instruments & Instrumentation |
en |
dc.subject.other |
Gaussian filters |
en |
dc.subject.other |
Industrial robotic manipulator |
en |
dc.subject.other |
Nonparametric filters |
en |
dc.subject.other |
Particle filter (PF) |
en |
dc.subject.other |
Sensor fusion |
en |
dc.subject.other |
Acoustic noise |
en |
dc.subject.other |
Air filters |
en |
dc.subject.other |
Cellular radio systems |
en |
dc.subject.other |
Control theory |
en |
dc.subject.other |
End effectors |
en |
dc.subject.other |
Estimation |
en |
dc.subject.other |
Extended Kalman filters |
en |
dc.subject.other |
Flexible manipulators |
en |
dc.subject.other |
Nonlinear filtering |
en |
dc.subject.other |
Position control |
en |
dc.subject.other |
Robotics |
en |
dc.subject.other |
Sensors |
en |
dc.subject.other |
Spurious signal noise |
en |
dc.subject.other |
State estimation |
en |
dc.subject.other |
Industry |
en |
dc.title |
Particle filtering for state estimation in nonlinear industrial systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TIM.2009.2021212 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TIM.2009.2021212 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
State estimation is a major problem in industrial systems, particularly in industrial robotics. To this end, Gaussian and nonparametric filters have been developed. In this paper, the extended Kalman filter, which assumes Gaussian measurement noise, is compared with the particle filter, which does not make any assumption on the measurement noise distribution. As a case study, the estimation of the state vector of an industrial robot is used when measurements are available from an accelerometer that was mounted on the end effector of the robotic manipulator and from the encoders of the joints' motors. It is shown that, in this kind of sensor fusion problem, the particle filter outperforms the extended Kalman filter, at the cost of more demanding computations. © 2009 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Instrumentation and Measurement |
en |
dc.identifier.doi |
10.1109/TIM.2009.2021212 |
en |
dc.identifier.isi |
ISI:000270720000009 |
en |
dc.identifier.volume |
58 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
3885 |
en |
dc.identifier.epage |
3900 |
en |