HEAL DSpace

Particle filtering for state estimation in nonlinear industrial systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rigatos, GG en
dc.date.accessioned 2014-03-01T01:31:37Z
dc.date.available 2014-03-01T01:31:37Z
dc.date.issued 2009 en
dc.identifier.issn 0018-9456 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19853
dc.subject Extended Kalman filter (EKF) en
dc.subject Gaussian filters en
dc.subject Industrial robotic manipulator en
dc.subject Nonparametric filters en
dc.subject Particle filter (PF) en
dc.subject Sensor fusion en
dc.subject State estimation en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Instruments & Instrumentation en
dc.subject.other Gaussian filters en
dc.subject.other Industrial robotic manipulator en
dc.subject.other Nonparametric filters en
dc.subject.other Particle filter (PF) en
dc.subject.other Sensor fusion en
dc.subject.other Acoustic noise en
dc.subject.other Air filters en
dc.subject.other Cellular radio systems en
dc.subject.other Control theory en
dc.subject.other End effectors en
dc.subject.other Estimation en
dc.subject.other Extended Kalman filters en
dc.subject.other Flexible manipulators en
dc.subject.other Nonlinear filtering en
dc.subject.other Position control en
dc.subject.other Robotics en
dc.subject.other Sensors en
dc.subject.other Spurious signal noise en
dc.subject.other State estimation en
dc.subject.other Industry en
dc.title Particle filtering for state estimation in nonlinear industrial systems en
heal.type journalArticle en
heal.identifier.primary 10.1109/TIM.2009.2021212 en
heal.identifier.secondary http://dx.doi.org/10.1109/TIM.2009.2021212 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract State estimation is a major problem in industrial systems, particularly in industrial robotics. To this end, Gaussian and nonparametric filters have been developed. In this paper, the extended Kalman filter, which assumes Gaussian measurement noise, is compared with the particle filter, which does not make any assumption on the measurement noise distribution. As a case study, the estimation of the state vector of an industrial robot is used when measurements are available from an accelerometer that was mounted on the end effector of the robotic manipulator and from the encoders of the joints' motors. It is shown that, in this kind of sensor fusion problem, the particle filter outperforms the extended Kalman filter, at the cost of more demanding computations. © 2009 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Instrumentation and Measurement en
dc.identifier.doi 10.1109/TIM.2009.2021212 en
dc.identifier.isi ISI:000270720000009 en
dc.identifier.volume 58 en
dc.identifier.issue 11 en
dc.identifier.spage 3885 en
dc.identifier.epage 3900 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής