dc.contributor.author |
Boulamanti, AK |
en |
dc.contributor.author |
Philippopoulos, CJ |
en |
dc.date.accessioned |
2014-03-01T01:31:38Z |
|
dc.date.available |
2014-03-01T01:31:38Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1352-2310 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19865 |
|
dc.subject |
Alkanes |
en |
dc.subject |
Humidity |
en |
dc.subject |
Langmuir-Hinshelwood kinetics |
en |
dc.subject |
Molecular structure |
en |
dc.subject |
Stereochemical structure |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.classification |
Meteorology & Atmospheric Sciences |
en |
dc.subject.other |
Adsorption constants |
en |
dc.subject.other |
Alkanes |
en |
dc.subject.other |
Ambient temperatures |
en |
dc.subject.other |
Branched structures |
en |
dc.subject.other |
Carbon chains |
en |
dc.subject.other |
Feed concentrations |
en |
dc.subject.other |
Gas-phase |
en |
dc.subject.other |
Humidity |
en |
dc.subject.other |
Influence of waters |
en |
dc.subject.other |
Inhibitory effects |
en |
dc.subject.other |
Langmuir-Hinshelwood kinetics |
en |
dc.subject.other |
Langmuir-Hinshelwood models |
en |
dc.subject.other |
Methyl groups |
en |
dc.subject.other |
Photo-catalytic degradations |
en |
dc.subject.other |
Photo-catalytic oxidations |
en |
dc.subject.other |
Presence of waters |
en |
dc.subject.other |
Relative humidities |
en |
dc.subject.other |
Residence time |
en |
dc.subject.other |
Stereochemical structure |
en |
dc.subject.other |
Tank reactors |
en |
dc.subject.other |
Tertiary carbon atoms |
en |
dc.subject.other |
Water adsorptions |
en |
dc.subject.other |
Adsorption |
en |
dc.subject.other |
Atmospheric humidity |
en |
dc.subject.other |
Catalyst deactivation |
en |
dc.subject.other |
Catalyst poisoning |
en |
dc.subject.other |
Heptane |
en |
dc.subject.other |
Hexane |
en |
dc.subject.other |
Isomers |
en |
dc.subject.other |
Moisture |
en |
dc.subject.other |
Photocatalysis |
en |
dc.subject.other |
Photodegradation |
en |
dc.subject.other |
Rate constants |
en |
dc.subject.other |
Titanium |
en |
dc.subject.other |
Volatile organic compounds |
en |
dc.subject.other |
Water vapor |
en |
dc.subject.other |
Paraffins |
en |
dc.subject.other |
alkane derivative |
en |
dc.subject.other |
heptane |
en |
dc.subject.other |
hexane |
en |
dc.subject.other |
pentane |
en |
dc.subject.other |
titanium dioxide |
en |
dc.subject.other |
volatile organic compound |
en |
dc.subject.other |
air temperature |
en |
dc.subject.other |
alkane |
en |
dc.subject.other |
catalysis |
en |
dc.subject.other |
concentration (composition) |
en |
dc.subject.other |
humidity |
en |
dc.subject.other |
photodegradation |
en |
dc.subject.other |
volatile organic compound |
en |
dc.subject.other |
water vapor |
en |
dc.subject.other |
article |
en |
dc.subject.other |
catalysis |
en |
dc.subject.other |
chemical structure |
en |
dc.subject.other |
continuous stirred tank reactor |
en |
dc.subject.other |
environmental temperature |
en |
dc.subject.other |
humidity |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
photocatalysis |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
stereochemistry |
en |
dc.title |
Photocatalytic degradation of C5-C7 alkanes in the gas-phase |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.atmosenv.2009.03.036 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.atmosenv.2009.03.036 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The gas-phase photocatalytic oxidation (PCO) of pentane, i-pentane, hexane, i-hexane and heptane over illuminated titanium at ambient temperatures was studied in a continuous stirring-tank reactor and for different values of VOC feed concentrations and relative humidity levels. Conversions achieved were over 90% for residence times from 50 to 85 s and the only products formed were CO2 and H2O, while no catalyst deactivation was observed. The obtained results indicate that the molecular and stereochemical structures of the compounds play an important role in the reaction, as the rate was increasing with higher molecular weight, and the presence of a tertiary carbon atom enhanced the reactivity. It was also observed that the increase of the carbon chain by a methyl group had the same influence in the reaction rate in the case of both pentane and i-pentane, while the ratio of the rates for the linear and branched structure was the same for both C-5 and C-6 isomers. The presence of water in the system had an inhibitory effect in all cases. The PCO kinetics was well fit by a Langmuir-Hinshelwood model, modified so as to take into consideration the influence of water vapour. The rate constants ranged from 1.87 x 10(-7) Mol m(-2) s(-1) for pentane to 3.03 x 10(-7) mol m(-2) s(-1) for heptane, and the VOC adsorption constants from 1.14 10(4) to 2.83 10(4) m(3) mol(-1), while the water adsorption constant was 11.2 m(3) mol(-1). (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Atmospheric Environment |
en |
dc.identifier.doi |
10.1016/j.atmosenv.2009.03.036 |
en |
dc.identifier.isi |
ISI:000267117100002 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
20 |
en |
dc.identifier.spage |
3168 |
en |
dc.identifier.epage |
3174 |
en |