HEAL DSpace

Physics-based foundation for empirical mode decomposition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lee, YS en
dc.contributor.author Tsakirtzis, S en
dc.contributor.author Vakakis, AF en
dc.contributor.author Bergman, LA en
dc.contributor.author McFarland, DM en
dc.date.accessioned 2014-03-01T01:31:40Z
dc.date.available 2014-03-01T01:31:40Z
dc.date.issued 2009 en
dc.identifier.issn 0001-1452 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19871
dc.subject Empirical Mode Decomposition en
dc.subject.classification Engineering, Aerospace en
dc.subject.other Analyticity en
dc.subject.other Empirical Mode Decomposition en
dc.subject.other Flow analysis en
dc.subject.other Flow model en
dc.subject.other Intrinsic Mode functions en
dc.subject.other Mathematical expressions en
dc.subject.other Oscillatory mode en
dc.subject.other Physics-based en
dc.subject.other Slow dynamics en
dc.subject.other Slow flow en
dc.subject.other Structural systems en
dc.subject.other Theoretical foundations en
dc.subject.other Dynamical systems en
dc.subject.other Functions en
dc.subject.other Nonlinear dynamical systems en
dc.subject.other Signal analysis en
dc.subject.other Structures (built objects) en
dc.subject.other Time series en
dc.subject.other Vibrations (mechanical) en
dc.subject.other Decomposition en
dc.title Physics-based foundation for empirical mode decomposition en
heal.type journalArticle en
heal.identifier.primary 10.2514/1.43207 en
heal.identifier.secondary http://dx.doi.org/10.2514/1.43207 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract We study the correspondence between analytical and empirical slow-flow analyses. Given a sufficiently dense set of sensors, measured time series recorded throughout a mechanical or structural system contains all information regarding the dynamics of that system. Empirical mode decomposition is a useful tool for decomposing the measured time series in terms of intrinsic mode functions, which are oscillatory modes embedded in the data that fully reproduce the time series. The equivalence of responses of the analytical slow-flow models and the dominant intrinsic mode functions derived from empirical mode decomposition provides a physics-based theoretical foundation for empirical mode decomposition, which currently is performed formally in an ad hoc fashion. To demonstrate correspondence between analytical and empirical slow flows, we derive appropriate mathematical expressions governing the empirical slow flows and based on analyticity conditions. Several nonlinear dynamical systems are considered to demonstrate this correspondence, and the agreement between the analytical and empirical slow dynamics proves the assertion. Copyright © 2009 by the American Institute of Aeronautics and Astronautics, Inc. en
heal.publisher AMER INST AERONAUT ASTRONAUT en
heal.journalName AIAA Journal en
dc.identifier.doi 10.2514/1.43207 en
dc.identifier.isi ISI:000272503800014 en
dc.identifier.volume 47 en
dc.identifier.issue 12 en
dc.identifier.spage 2938 en
dc.identifier.epage 2963 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής