dc.contributor.author |
Gourgiotis, PA |
en |
dc.contributor.author |
Georgiadis, HG |
en |
dc.date.accessioned |
2014-03-01T01:31:40Z |
|
dc.date.available |
2014-03-01T01:31:40Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0022-5096 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19873 |
|
dc.subject |
Asymptotics |
en |
dc.subject |
Cracks |
en |
dc.subject |
Dipolar gradient elasticity |
en |
dc.subject |
Hypersingular integral equations |
en |
dc.subject |
Microstructure |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Condensed Matter |
en |
dc.subject.other |
Asymptotic solutions |
en |
dc.subject.other |
Asymptotics |
en |
dc.subject.other |
Classical theory |
en |
dc.subject.other |
Crack driving force |
en |
dc.subject.other |
Crack problems |
en |
dc.subject.other |
Critical stress |
en |
dc.subject.other |
Dipolar gradient elasticity |
en |
dc.subject.other |
Elastic strain |
en |
dc.subject.other |
Elastic stress |
en |
dc.subject.other |
Finite part integrals |
en |
dc.subject.other |
Full-field |
en |
dc.subject.other |
Generalized continuum theories |
en |
dc.subject.other |
Gradient elasticity |
en |
dc.subject.other |
Gradient theory |
en |
dc.subject.other |
Hadamard |
en |
dc.subject.other |
Hypersingular integral equation |
en |
dc.subject.other |
Hypersingular integral equations |
en |
dc.subject.other |
J integral |
en |
dc.subject.other |
Linear expression |
en |
dc.subject.other |
Local maximum |
en |
dc.subject.other |
Material constant |
en |
dc.subject.other |
Material microstructures |
en |
dc.subject.other |
Maximum values |
en |
dc.subject.other |
Microstructured materials |
en |
dc.subject.other |
Microstructured solids |
en |
dc.subject.other |
Mindlin |
en |
dc.subject.other |
Numerical treatments |
en |
dc.subject.other |
Plane-strain |
en |
dc.subject.other |
Strain energy density |
en |
dc.subject.other |
Strain fields |
en |
dc.subject.other |
Strain tensor |
en |
dc.subject.other |
Strengthening effect |
en |
dc.subject.other |
Stress distribution |
en |
dc.subject.other |
Williams |
en |
dc.subject.other |
Asymptotic analysis |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Continuum mechanics |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Elastohydrodynamics |
en |
dc.subject.other |
Fracture mechanics |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Microstructure |
en |
dc.subject.other |
Strain energy |
en |
dc.subject.other |
Stress analysis |
en |
dc.subject.other |
Stress concentration |
en |
dc.subject.other |
Tensors |
en |
dc.subject.other |
Crack tips |
en |
dc.title |
Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jmps.2009.07.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jmps.2009.07.005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The present study aims at determining the elastic stress and displacement fields around the tips of a finite-length crack in a microstructured solid under remotely applied plane-strain loading (mode I and II cases). The material microstructure is modeled through the Toupin-Mindlin generalized continuum theory of dipolar gradient elasticity. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain tensor (as in classical elasticity) and the gradient of the strain tensor (additional term). A simple but yet rigorous version of the theory is employed here by considering an isotropic linear expression of the elastic strain-energy density that involves only three material constants (the two Lame constants and the so-called gradient coefficient). First, a near-tip asymptotic solution is obtained by the Knein-Williams technique. Then, we attack the complete boundary value problem in an effort to obtain a full-field solution. Hypersingular integral equations with a cubic singularity are formulated with the aid of the Fourier transform. These equations are solved by analytical considerations on Hadamard finite-part integrals and a numerical treatment. The results show significant departure from the predictions of standard fracture mechanics. In view of these results, it seems that the classical theory of elasticity is inadequate to analyze crack problems in microstructured materials. Indeed, the present results indicate that the stress distribution ahead of the crack tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the standard result and the strain field is bounded. Finally, the J-integral (energy release rate) in gradient elasticity was evaluated. A decrease of its value is noticed in comparison with the classical theory. This shows that the gradient theory predicts a strengthening effect since a reduction of crack driving force takes place as the material microstructure becomes more pronounced. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Journal of the Mechanics and Physics of Solids |
en |
dc.identifier.doi |
10.1016/j.jmps.2009.07.005 |
en |
dc.identifier.isi |
ISI:000271337400008 |
en |
dc.identifier.volume |
57 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1898 |
en |
dc.identifier.epage |
1920 |
en |