HEAL DSpace

Potentiality of feed-forward neural networks for classifying dark formations to oil spills and look-alikes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Topouzelis, K en
dc.contributor.author Karathanassi, V en
dc.contributor.author Pavlakis, P en
dc.contributor.author Rokos, D en
dc.date.accessioned 2014-03-01T01:31:41Z
dc.date.available 2014-03-01T01:31:41Z
dc.date.issued 2009 en
dc.identifier.issn 10106049 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19884
dc.subject Neural networks en
dc.subject Oil spill en
dc.subject Pollution en
dc.subject SAR en
dc.subject Sea en
dc.subject.other algorithm en
dc.subject.other artificial neural network en
dc.subject.other Bayesian analysis en
dc.subject.other detection method en
dc.subject.other image analysis en
dc.subject.other image classification en
dc.subject.other nonlinearity en
dc.subject.other numerical model en
dc.subject.other oil pollution en
dc.subject.other oil spill en
dc.subject.other probability en
dc.subject.other radar imagery en
dc.subject.other synthetic aperture radar en
dc.title Potentiality of feed-forward neural networks for classifying dark formations to oil spills and look-alikes en
heal.type journalArticle en
heal.identifier.primary 10.1080/10106040802488526 en
heal.identifier.secondary http://dx.doi.org/10.1080/10106040802488526 en
heal.publicationDate 2009 en
heal.abstract Radar backscatter values from oil spills are very similar to backscatter values from very calm sea areas and other ocean phenomena. Several studies aiming at oil spill detection have been conducted. Most of these studies rely on the detection of dark areas, which have high Bayesian probability of being oil spills. The drawback of these methods is a complex process, mainly because non-linearly separable datasets are introduced in statistically based decisions. The use of neural networks (NNs) in remote sensing has increased significantly, as NNs can simultaneously handle non-linear data of a multidimensional input space. In this article, we investigate the ability of two commonly used feed-forward NN models: multilayer perceptron (MLP) and radial basis function (RBF) networks, to classify dark formations in oil spills and look-alike phenomena. The appropriate training algorithm, type and architecture of the optimum network are subjects of research. Inputs to the networks are the original synthetic aperture radar image and other images derived from it. MLP networks are recognized as more suitable for oil spill detection. en
heal.journalName Geocarto International en
dc.identifier.doi 10.1080/10106040802488526 en
dc.identifier.volume 24 en
dc.identifier.issue 3 en
dc.identifier.spage 179 en
dc.identifier.epage 191 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής