dc.contributor.author |
Melagraki, G |
en |
dc.contributor.author |
Afantitis, A |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Koutentis, PA |
en |
dc.contributor.author |
Kollias, G |
en |
dc.contributor.author |
Igglessi-Markopoulou, O |
en |
dc.date.accessioned |
2014-03-01T01:31:41Z |
|
dc.date.available |
2014-03-01T01:31:41Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1381-1991 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19888 |
|
dc.subject |
HDAC |
en |
dc.subject |
Histone deacetylases |
en |
dc.subject |
Hydroxamic acids |
en |
dc.subject |
In silico screening |
en |
dc.subject |
QSAR |
en |
dc.subject.classification |
Biochemistry & Molecular Biology |
en |
dc.subject.classification |
Chemistry, Applied |
en |
dc.subject.classification |
Chemistry, Medicinal |
en |
dc.subject.classification |
Chemistry, Multidisciplinary |
en |
dc.subject.other |
histone deacetylase inhibitor |
en |
dc.subject.other |
article |
en |
dc.subject.other |
drug activity |
en |
dc.subject.other |
drug inhibition |
en |
dc.subject.other |
drug screening |
en |
dc.subject.other |
drug structure |
en |
dc.subject.other |
IC 50 |
en |
dc.subject.other |
multiple linear regression analysis |
en |
dc.subject.other |
physical chemistry |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
quantitative structure activity relation |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer Simulation |
en |
dc.subject.other |
Drug Discovery |
en |
dc.subject.other |
Enzyme Inhibitors |
en |
dc.subject.other |
Histone Deacetylase Inhibitors |
en |
dc.subject.other |
Hydroxamic Acids |
en |
dc.subject.other |
Models, Chemical |
en |
dc.subject.other |
Physicochemical Phenomena |
en |
dc.subject.other |
Pyridines |
en |
dc.subject.other |
Quantitative Structure-Activity Relationship |
en |
dc.subject.other |
Regression Analysis |
en |
dc.subject.other |
Reproducibility of Results |
en |
dc.subject.other |
Thiophenes |
en |
dc.title |
Predictive QSAR workflow for the in silico identification and screening of novel HDAC inhibitors |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11030-009-9115-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11030-009-9115-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A linear Quantitative Structure-Activity Relationship (QSAR) is developed in this work for modeling and predicting HDAC inhibition by 5-pyridin-2-yl- thiophene-2-hydroxamic acids. In particular, a five-variable model is produced by using the Multiple Linear Regression (MLR) technique and the Elimination Selection-Stepwise Regression Method (ES-SWR) on a database that consists of 58 recently discovered 5-pyridin-2-yl-thiophene-2-hydroxamic acids and 69 descriptors. The physical meaning of the selected descriptors is discussed in detail. The validity of the proposed MLR model is established using the following techniques: cross validation, validation through an external test set and Y-randomization. Furthermore, the domain of applicability which indicates the area of reliable predictions is defined. Based on the produced model, an in silico-screening study explores novel structural patterns and suggests new potent lead compounds. © 2009 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Molecular Diversity |
en |
dc.identifier.doi |
10.1007/s11030-009-9115-2 |
en |
dc.identifier.isi |
ISI:000268304500005 |
en |
dc.identifier.volume |
13 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
301 |
en |
dc.identifier.epage |
311 |
en |