HEAL DSpace

Probabilistic relevance feedback approach for content-based image retrieval based on gaussian mixture models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Marakakis, A en
dc.contributor.author Galatsanos, N en
dc.contributor.author Likas, A en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:31:42Z
dc.date.available 2014-03-01T01:31:42Z
dc.date.issued 2009 en
dc.identifier.issn 1751-9659 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19897
dc.subject Content Based Image Retrieval en
dc.subject Gaussian Mixture Model en
dc.subject Relevance Feedback en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Content based retrieval en
dc.subject.other Feature extraction en
dc.subject.other Feedback en
dc.subject.other Granular materials en
dc.subject.other Image retrieval en
dc.subject.other Information retrieval en
dc.subject.other Probability density function en
dc.subject.other Trellis codes en
dc.subject.other Closed forms en
dc.subject.other Content-Based Image retrievals en
dc.subject.other Distance measures en
dc.subject.other Gaussian mixture models en
dc.subject.other Gaussian mixtures en
dc.subject.other GM models en
dc.subject.other Image features en
dc.subject.other Image models en
dc.subject.other Models of the users en
dc.subject.other Negative feedbacks en
dc.subject.other Numerical experiments en
dc.subject.other Probability densities en
dc.subject.other Relevance feedbacks en
dc.subject.other Control theory en
dc.title Probabilistic relevance feedback approach for content-based image retrieval based on gaussian mixture models en
heal.type journalArticle en
heal.identifier.primary 10.1049/iet-ipr:20080012 en
heal.identifier.secondary http://dx.doi.org/10.1049/iet-ipr:20080012 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract A new relevance feedback (RF) approach for content-based image retrieval is presented. This approach uses Gaussian mixture (GM) models of the image features and a query that is updated in a probabilistic manner. This update reflects the preferences of the user and is based on the models of both the positive and negative feedback images. The retrieval is based on a recently proposed distance measure between probability density functions, which can be computed in closed form for GM models. The proposed approach takes advantage of the form of this distance measure and updates it very efficiently based on the models of the user-specified relevant and irrelevant images. It is also shown that this RF framework is fairly general and can be applied in case other image models or distance measures are used instead of those proposed in this work. Finally, comparative numerical experiments are provided, which that demonstrate the merits of the proposed RF methodology and the use of the distance measure, and also the advantages of using GMs for image modelling. © 2009 The Institution of Engineering and Technology. en
heal.publisher INST ENGINEERING TECHNOLOGY-IET en
heal.journalName IET Image Processing en
dc.identifier.doi 10.1049/iet-ipr:20080012 en
dc.identifier.isi ISI:000263904800002 en
dc.identifier.volume 3 en
dc.identifier.issue 1 en
dc.identifier.spage 10 en
dc.identifier.epage 25 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής