dc.contributor.author |
Boulougouris, GC |
en |
dc.contributor.author |
Theodorou, DN |
en |
dc.date.accessioned |
2014-03-01T01:31:42Z |
|
dc.date.available |
2014-03-01T01:31:42Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0021-9606 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19898 |
|
dc.subject |
eigenvalues and eigenfunctions |
en |
dc.subject |
free energy |
en |
dc.subject |
polymers |
en |
dc.subject |
stochastic processes |
en |
dc.subject.classification |
Physics, Atomic, Molecular & Chemical |
en |
dc.subject.other |
Biological systems |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Polystyrenes |
en |
dc.subject.other |
Stochastic systems |
en |
dc.subject.other |
Atactic polystyrenes |
en |
dc.subject.other |
Configuration spaces |
en |
dc.subject.other |
Discrete state |
en |
dc.subject.other |
Discrete stochastic systems |
en |
dc.subject.other |
Eigenvectors |
en |
dc.subject.other |
Ensemble averages |
en |
dc.subject.other |
Euclidean spaces |
en |
dc.subject.other |
Geometric representations |
en |
dc.subject.other |
Long-time dynamics |
en |
dc.subject.other |
Low energy regions |
en |
dc.subject.other |
Macroscopic properties |
en |
dc.subject.other |
Molecular mechanisms |
en |
dc.subject.other |
Non equilibriums |
en |
dc.subject.other |
Phenyl groups |
en |
dc.subject.other |
Relaxation modes |
en |
dc.subject.other |
Segmental relaxations |
en |
dc.subject.other |
Simple expressions |
en |
dc.subject.other |
State probabilities |
en |
dc.subject.other |
Subglass relaxations |
en |
dc.subject.other |
Time correlation functions |
en |
dc.subject.other |
Time evolution operators |
en |
dc.subject.other |
Space probes |
en |
dc.subject.other |
9 alpha,11 alpha,15 alpha trihydroxy 16 phenoxy 17,18,19,20 tetranorprosta 4,5,13 trienoic acid |
en |
dc.subject.other |
9 alpha,11 alpha,15 alpha-trihydroxy-16-phenoxy-17,18,19,20-tetranorprosta-4,5,13-trienoic acid |
en |
dc.subject.other |
polymer |
en |
dc.subject.other |
prostaglandin derivative |
en |
dc.subject.other |
article |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
heat |
en |
dc.subject.other |
Monte Carlo method |
en |
dc.subject.other |
probability |
en |
dc.subject.other |
statistics |
en |
dc.subject.other |
Hot Temperature |
en |
dc.subject.other |
Monte Carlo Method |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Prostaglandins, Synthetic |
en |
dc.subject.other |
Stochastic Processes |
en |
dc.title |
Probing subglass relaxation in polymers via a geometric representation of probabilities, observables, and relaxation modes for discrete stochastic systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1063/1.3063118 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1063/1.3063118 |
en |
heal.identifier.secondary |
044905 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The dynamics of many physical, chemical, and biological systems can be reduced to a succession of infrequent transitions in a network of discrete states representing low energy regions in configuration space. This enables accessing long-time dynamics and predicting macroscopic properties. Here we develop a new, perfectly general statistical mechanical/geometric formulation that expresses both state probabilities and all observables in the same Euclidean space, spanned by the eigenvectors of the symmetrized time evolution operator. Our formalism leads to simple expressions for nonequilibrium and equilibrium ensemble averages, variances, and time correlation functions of any observable and allows a rigorous decomposition of the dynamics into relaxation modes. Applying it to subglass segmental relaxation in atactic polystyrene up to times on the order of 10 μs, we probe the molecular mechanism of the γ and δ processes and unequivocally identify the δ process with rotation of a single phenyl group around its stem. © 2009 American Institute of Physics. |
en |
heal.publisher |
AMER INST PHYSICS |
en |
heal.journalName |
Journal of Chemical Physics |
en |
dc.identifier.doi |
10.1063/1.3063118 |
en |
dc.identifier.isi |
ISI:000262965000044 |
en |
dc.identifier.volume |
130 |
en |
dc.identifier.issue |
4 |
en |