HEAL DSpace

Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kourakos, G en
dc.contributor.author Mantoglou, A en
dc.date.accessioned 2014-03-01T01:31:43Z
dc.date.available 2014-03-01T01:31:43Z
dc.date.issued 2009 en
dc.identifier.issn 0309-1708 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19909
dc.subject Coastal aquifers en
dc.subject Evolutionary algorithms en
dc.subject Modular neural networks en
dc.subject Pumping optimization en
dc.subject Seawater intrusion en
dc.subject Surrogate models en
dc.subject Variable density models en
dc.subject.classification Water Resources en
dc.subject.other Aquifers en
dc.subject.other Backpropagation en
dc.subject.other Evolutionary algorithms en
dc.subject.other Groundwater geochemistry en
dc.subject.other Groundwater resources en
dc.subject.other Highway bridges en
dc.subject.other Hydrogeology en
dc.subject.other Mathematical models en
dc.subject.other Numerical methods en
dc.subject.other Optimization en
dc.subject.other Pumps en
dc.subject.other Salinity measurement en
dc.subject.other Seawater en
dc.subject.other Water wells en
dc.subject.other Wells en
dc.subject.other Coastal aquifers en
dc.subject.other Modular neural networks en
dc.subject.other Pumping optimization en
dc.subject.other Seawater intrusion en
dc.subject.other Surrogate models en
dc.subject.other Variable density models en
dc.subject.other Neural networks en
dc.subject.other algorithm en
dc.subject.other artificial neural network en
dc.subject.other coastal aquifer en
dc.subject.other groundwater flow en
dc.subject.other interpolation en
dc.subject.other numerical model en
dc.subject.other optimization en
dc.subject.other pumping en
dc.subject.other surrogate method en
dc.subject.other Cycladas en
dc.subject.other Eurasia en
dc.subject.other Europe en
dc.subject.other Greece en
dc.subject.other Santorin en
dc.subject.other Southern Aegean en
dc.subject.other Southern Europe en
dc.title Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.advwatres.2009.01.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.advwatres.2009.01.001 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Pumping optimization of coastal aquifers involves complex numerical models. In problems with many decision variables, the computational burden for reaching the optimal solution can be excessive. Artificial Neural Networks (ANN) are flexible function approximators and have been used as surrogate models of complex numerical models in groundwater optimization. However, this approach is not practical in cases where the number of decision variables is large, because the required neural network structure can be very complex and difficult to train. The present study develops an optimization method based on modular neural networks, in which several small subnetwork modules, trained using a fast adaptive procedure, cooperate to solve a complex pumping optimization problem with many decision variables. The method utilizes the fact that salinity distribution in the aquifer, depends more on pumping from nearby wells rather than from distant ones. Each subnetwork predicts salinity in only one monitoring well, and is controlled by relatively few pumping wells falling within certain control distance from the monitoring well. While the initial control area is radial, its shape is aclaptively improved using a Hermite interpolation procedure. The modular neural subnetworks are trained adaptively during optimization, and it is possible to retrain only the ones not performing well. As optimization progresses, the subnetworks are adapted to maximize performance near the current search space of the optimization algorithm. The modular neural subnetwork models are combined with an efficient optimization algorithm and are applied to a real coastal aquifer in the Greek island of Santorini. The numerical code SEAWAT was selected for solving the partial differential equations of flow and density dependent transport. The decision variables correspond to pumping rates from 34 wells. The modular subnetwork implementation resulted in significant reduction in CPU time and identified an even better solution than the original numerical model. (C) 2009 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Advances in Water Resources en
dc.identifier.doi 10.1016/j.advwatres.2009.01.001 en
dc.identifier.isi ISI:000265330000003 en
dc.identifier.volume 32 en
dc.identifier.issue 4 en
dc.identifier.spage 507 en
dc.identifier.epage 521 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής