HEAL DSpace

Reversible interpolation of vectorial images by an anisotropic diffusion-projection PDE

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Roussos, A en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:31:48Z
dc.date.available 2014-03-01T01:31:48Z
dc.date.issued 2009 en
dc.identifier.issn 0920-5691 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19934
dc.subject Anti-aliasing filter en
dc.subject Diffusion-projection PDE en
dc.subject Image interpolation en
dc.subject Nonlinear anisotropic diffusion en
dc.subject Partial differential equations (PDEs) en
dc.subject Reversibility en
dc.subject Sampling en
dc.subject Vector-valued images en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Anti-aliasing filter en
dc.subject.other Image interpolation en
dc.subject.other Nonlinear anisotropic diffusion en
dc.subject.other Reversibility en
dc.subject.other Vector-valued images en
dc.subject.other Aircraft engines en
dc.subject.other Anti-aliasing en
dc.subject.other Computational fluid dynamics en
dc.subject.other Computer vision en
dc.subject.other Diffusion en
dc.subject.other Image analysis en
dc.subject.other Image segmentation en
dc.subject.other Nonlinear equations en
dc.subject.other Optical anisotropy en
dc.subject.other Partial differential equations en
dc.subject.other Interpolation en
dc.title Reversible interpolation of vectorial images by an anisotropic diffusion-projection PDE en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11263-008-0132-x en
heal.identifier.secondary http://dx.doi.org/10.1007/s11263-008-0132-x en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this paper, a nonlinear model for the interpolation of vector-valued images is proposed. This model is based on an anisotropic diffusion PDE and performs an interpolation that is reversible. The interpolation solution is restricted to the subspace of functions that can recover the discrete input image, after an appropriate smoothing and sampling. The proposed nonlinear diffusion flow lies on this subspace while its strength and anisotropy adapt to the local variations and geometry of image structures. The derived method effectively reconstructs the real image structures and yields a satisfactory interpolation result. Compared to classic and other existing PDE-based interpolation methods, our proposed method seems to increase the accuracy of the result and to reduce the undesirable artifacts, such as blurring, ringing, block effects and edge distortion. We present extensive experimental results that demonstrate the potential of the method as applied to graylevel and color images. © 2008 Springer Science+Business Media, LLC. en
heal.publisher SPRINGER en
heal.journalName International Journal of Computer Vision en
dc.identifier.doi 10.1007/s11263-008-0132-x en
dc.identifier.isi ISI:000266477100002 en
dc.identifier.volume 84 en
dc.identifier.issue 2 en
dc.identifier.spage 130 en
dc.identifier.epage 145 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής