dc.contributor.author |
Aggelogiannaki, E |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.date.accessioned |
2014-03-01T01:31:49Z |
|
dc.date.available |
2014-03-01T01:31:49Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
09670661 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19940 |
|
dc.subject |
H∞ control |
en |
dc.subject |
Hyperbolic distributed parameter systems |
en |
dc.subject |
Radial basis function neural networks |
en |
dc.subject |
Robust control |
en |
dc.subject |
Thermal systems |
en |
dc.subject.other |
Control laws |
en |
dc.subject.other |
Controlled variables |
en |
dc.subject.other |
Conventional controls |
en |
dc.subject.other |
Empirical models |
en |
dc.subject.other |
Hyperbolic distributed parameter systems |
en |
dc.subject.other |
Non-linear models |
en |
dc.subject.other |
Non-linear state |
en |
dc.subject.other |
Nonlinear h |
en |
dc.subject.other |
Process inputs |
en |
dc.subject.other |
Radial basis function neural networks |
en |
dc.subject.other |
Robust h |
en |
dc.subject.other |
Spatial locations |
en |
dc.subject.other |
Thermal systems |
en |
dc.subject.other |
Attitude control |
en |
dc.subject.other |
Distributed computer systems |
en |
dc.subject.other |
Distributed parameter networks |
en |
dc.subject.other |
Identification (control systems) |
en |
dc.subject.other |
Intelligent control |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Robust control |
en |
dc.subject.other |
Systems engineering |
en |
dc.subject.other |
Vibration control |
en |
dc.subject.other |
Distributed parameter control systems |
en |
dc.title |
Robust nonlinear H∞ control of hyperbolic distributed parameter systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.conengprac.2008.11.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.conengprac.2008.11.005 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A radial basis function (RBF) neural network model is developed for the identification of hyperbolic distributed parameter systems (DPSs). The empirical model is based only on process input-output data and is used for the estimation of the controlled variables at multiple spatial locations. The produced nonlinear model is transformed to a nonlinear state-space formulation, which in turn is used for deriving a robust H∞ control law. The proposed methodology is applied to a long duct for the flow-based control of temperature distribution. The performance of the proposed method is illustrated by comparing it with conventional control strategies. © 2008 Elsevier Ltd. All rights reserved. |
en |
heal.journalName |
Control Engineering Practice |
en |
dc.identifier.doi |
10.1016/j.conengprac.2008.11.005 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
723 |
en |
dc.identifier.epage |
732 |
en |