HEAL DSpace

Robust sequential data modeling using an outlier tolerant hidden markov model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzis, SP en
dc.contributor.author Kosmopoulos, DI en
dc.contributor.author Varvarigou, TA en
dc.date.accessioned 2014-03-01T01:31:49Z
dc.date.available 2014-03-01T01:31:49Z
dc.date.issued 2009 en
dc.identifier.issn 0162-8828 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19941
dc.subject Expectation-maximization en
dc.subject Factor analysis en
dc.subject Hidden Markov models en
dc.subject Sequential data modeling en
dc.subject Student's t-distribution en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Conventional approach en
dc.subject.other Covariance matrices en
dc.subject.other Data sets en
dc.subject.other Expectation-maximization en
dc.subject.other Factor analysis en
dc.subject.other Finite gaussian mixture models en
dc.subject.other Finite mixtures en
dc.subject.other Gaussian Mixture Model en
dc.subject.other Hidden state en
dc.subject.other Model parameters estimation en
dc.subject.other Multivariate Student en
dc.subject.other Sequential data en
dc.subject.other Sequential data modeling en
dc.subject.other T-mixture models en
dc.subject.other Blind source separation en
dc.subject.other Communication channels (information theory) en
dc.subject.other Computational grammars en
dc.subject.other Covariance matrix en
dc.subject.other Maximum likelihood estimation en
dc.subject.other Maximum principle en
dc.subject.other Mixtures en
dc.subject.other Object recognition en
dc.subject.other Parameter estimation en
dc.subject.other Students en
dc.subject.other Hidden Markov models en
dc.title Robust sequential data modeling using an outlier tolerant hidden markov model en
heal.type journalArticle en
heal.identifier.primary 10.1109/TPAMI.2008.215 en
heal.identifier.secondary http://dx.doi.org/10.1109/TPAMI.2008.215 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Hidden Markov (chain) models using finite Gaussian mixture models as their hidden state distributions have been successfully applied in sequential data modeling and classification applications. Nevertheless, Gaussian mixture models are well known to be highly intolerant to the presence of untypical data within the fitting data sets used for their estimation. Finite Student's t-mixture models have recently emerged as a heavier-tailed, robust alternative to Gaussian mixture models, overcoming these hurdles. To exploit these merits of Student's t-mixture models in the context of a sequential data modeling setting, we introduce, in this paper, a novel hidden Markov model where the hidden state distributions are considered to be finite mixtures of multivariate Student's t-densities. We derive an algorithm for the model parameters estimation under a maximum likelihood framework, assuming full, diagonal, and factor-analyzed covariance matrices. The advantages of the proposed model over conventional approaches are experimentally demonstrated through a series of sequential data modeling applications. © 2009 IEEE. en
heal.publisher IEEE COMPUTER SOC en
heal.journalName IEEE Transactions on Pattern Analysis and Machine Intelligence en
dc.identifier.doi 10.1109/TPAMI.2008.215 en
dc.identifier.isi ISI:000267369800009 en
dc.identifier.volume 31 en
dc.identifier.issue 9 en
dc.identifier.spage 1657 en
dc.identifier.epage 1669 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής