dc.contributor.author |
Angelopoulos, P |
en |
dc.contributor.author |
Evangelaras, H |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:31:49Z |
|
dc.date.available |
2014-03-01T01:31:49Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0378-3758 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19945 |
|
dc.subject |
Nonregular factorial |
en |
dc.subject |
Orthogonal arrays |
en |
dc.subject |
Run order |
en |
dc.subject |
Time trend |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
DESIGNS |
en |
dc.title |
Run orders for efficient two level experimental plans with minimum factor level changes robust to time trends |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jspi.2009.05.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jspi.2009.05.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper we construct run orders of orthogonal arrays with 12 <= n <= 28 runs and 4 <= q <= 6 factors that minimize the number of level changes of each factor. The corresponding orthogonal arrays can estimate a model with all main effects and their two factor interactions with the highest efficiency and also provide estimates of all main effects that are independent of linear and quadratic time (or position) trends. Some alternative efficient run orders are also presented when the estimation of two factor interactions is of experimental interest. (C) 2009 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Statistical Planning and Inference |
en |
dc.identifier.doi |
10.1016/j.jspi.2009.05.002 |
en |
dc.identifier.isi |
ISI:000268703700031 |
en |
dc.identifier.volume |
139 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
3718 |
en |
dc.identifier.epage |
3724 |
en |