dc.contributor.author |
Sapountzakis, EJ |
en |
dc.contributor.author |
Dourakopoulos, JA |
en |
dc.date.accessioned |
2014-03-01T01:31:51Z |
|
dc.date.available |
2014-03-01T01:31:51Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0001-5970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19963 |
|
dc.subject |
Boundary Condition |
en |
dc.subject |
Boundary Element Method |
en |
dc.subject |
Boundary Integral Equation |
en |
dc.subject |
Boundary Value Problem |
en |
dc.subject |
Coordinate System |
en |
dc.subject |
Cross Section |
en |
dc.subject |
Initial Boundary Value Problem |
en |
dc.subject |
Integral Representation |
en |
dc.subject |
Partial Differential Equation |
en |
dc.subject |
Shear Deformation |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Beams and girders |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Boundary integral equations |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Elastic waves |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Machine vibrations |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Probability density function |
en |
dc.subject.other |
Shear deformation |
en |
dc.subject.other |
Weaving |
en |
dc.subject.other |
Basic equations |
en |
dc.subject.other |
Boundary elements |
en |
dc.subject.other |
Boundary integral equation approaches |
en |
dc.subject.other |
Boundary values |
en |
dc.subject.other |
Co-ordinate systems |
en |
dc.subject.other |
Concentrated loadings |
en |
dc.subject.other |
Coupled partial differential equations |
en |
dc.subject.other |
Cross sections |
en |
dc.subject.other |
Flexural-torsional vibrations |
en |
dc.subject.other |
Free and forced vibrations |
en |
dc.subject.other |
Initial boundary-value problems |
en |
dc.subject.other |
Integral representations |
en |
dc.subject.other |
Mathematical formulas |
en |
dc.subject.other |
Nonsymmetric cross sections |
en |
dc.subject.other |
Rotary inertias |
en |
dc.subject.other |
Shear deformation coefficients |
en |
dc.subject.other |
Shear deformation effects |
en |
dc.subject.other |
Stress functions |
en |
dc.subject.other |
Stress resultants |
en |
dc.subject.other |
Timoshenko beams |
en |
dc.subject.other |
Transverse displacements |
en |
dc.subject.other |
Warping functions |
en |
dc.subject.other |
Boundary element method |
en |
dc.title |
Shear deformation effect in flexural-torsional vibrations of beams by BEM |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00707-008-0041-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00707-008-0041-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper, a boundary element method is developed for the general flexural-torsional vibration problem of Timoshenko beams of arbitrarily shaped cross section taking into account the effects of warping stiffness, warping and rotary inertia and shear deformation. The beam is subjected to arbitrarily transverse and/or torsional distributed or concentrated loading, while its edges are restrained by the most general linear boundary conditions. The resulting initial boundary value problem, described by three coupled partial differential equations, is solved employing a boundary integral equation approach. Besides the effectiveness and accuracy of the developed method, a significant advantage is that the displacements as well as the stress resultants are computed at any cross-section of the beam using the respective integral representations as mathematical formulae. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Both free and forced vibrations are examined. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. © 2008 Springer-Verlag. |
en |
heal.publisher |
SPRINGER WIEN |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/s00707-008-0041-7 |
en |
dc.identifier.isi |
ISI:000263339600005 |
en |
dc.identifier.volume |
203 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
197 |
en |
dc.identifier.epage |
221 |
en |