dc.contributor.author |
Kiokes, G |
en |
dc.contributor.author |
Amditis, A |
en |
dc.contributor.author |
Uzunoglu, NK |
en |
dc.date.accessioned |
2014-03-01T01:31:55Z |
|
dc.date.available |
2014-03-01T01:31:55Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1751-956X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19976 |
|
dc.subject |
Orthogonal Frequency Division Multiplex |
en |
dc.subject |
Performance Analysis |
en |
dc.subject |
Vehicular Communication |
en |
dc.subject.classification |
Transportation Science & Technology |
en |
dc.subject.other |
Cyclic Prefix |
en |
dc.subject.other |
Data exchange |
en |
dc.subject.other |
Data rates |
en |
dc.subject.other |
Doppler spread |
en |
dc.subject.other |
Emergency breaking |
en |
dc.subject.other |
Frequency-selective fading |
en |
dc.subject.other |
Guard intervals |
en |
dc.subject.other |
High mobility |
en |
dc.subject.other |
High speed vehicles |
en |
dc.subject.other |
IEEE 802.11s |
en |
dc.subject.other |
In-vehicle |
en |
dc.subject.other |
Initial values |
en |
dc.subject.other |
Intelligent transportation systems |
en |
dc.subject.other |
Intercarrier interference |
en |
dc.subject.other |
Mobile channels |
en |
dc.subject.other |
Multi-path delays |
en |
dc.subject.other |
P systems |
en |
dc.subject.other |
Performance analysis |
en |
dc.subject.other |
Physical layers |
en |
dc.subject.other |
Simulation result |
en |
dc.subject.other |
Simulation-based |
en |
dc.subject.other |
Transmission distances |
en |
dc.subject.other |
Transportation safety |
en |
dc.subject.other |
Vehicular communications |
en |
dc.subject.other |
Vehicular environments |
en |
dc.subject.other |
Wireless access |
en |
dc.subject.other |
Wireless technologies |
en |
dc.subject.other |
Bit error rate |
en |
dc.subject.other |
Carrier mobility |
en |
dc.subject.other |
Channel estimation |
en |
dc.subject.other |
Frequency allocation |
en |
dc.subject.other |
Intelligent vehicle highway systems |
en |
dc.subject.other |
Local area networks |
en |
dc.subject.other |
Mobile telecommunication systems |
en |
dc.subject.other |
Orthogonal frequency division multiplexing |
en |
dc.subject.other |
Rayleigh fading |
en |
dc.subject.other |
Signal to noise ratio |
en |
dc.subject.other |
Simulators |
en |
dc.subject.other |
Standards |
en |
dc.subject.other |
Vehicle locating systems |
en |
dc.subject.other |
Vehicles |
en |
dc.subject.other |
Wireless telecommunication systems |
en |
dc.title |
Simulation-based performance analysis and improvement of orthogonal frequency division multiplexing - 802.11p system for vehicular communications |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1049/iet-its.2008.0070 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1049/iet-its.2008.0070 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this study, the physical layer (PHY) of the upcoming vehicular communication standard IEEE 802.11p has been simulated in vehicle-to-vehicle situation through two different scenarios. IEEE 802.11p wireless access in vehicular environment defines modifications to IEEE 802.11 to support intelligent transportation systems applications. The standard is being considered as a promising wireless technology for enhancing transportation safety and provides safety-related services like collision avoidance and emergency breaking. At first, this includes data exchange between high-speed vehicles and between the vehicles and the roadside infrastructure in the licensed ITS band of 5.9GHz. Performance analysis of PHY model has been evaluated into different propagation conditions (AWGN, Ricean and Rayleigh fading). In particular, bit error rate (BER) and signal to noise ratio for all the data rates have been estimated. Simulation results reveal that our system can efficiently mitigate inter-symbol interference and inter-carrier interference introduced by multi-path delay spread in our high mobility environment but against frequency-selective fading BER values are on to increase. To overcome this problem, the authors propose to use a different value of guard interval (3.2s). Our initial results indicate that the performance with the larger cyclic prefix outperforms the performance of the initial value in our mobile channel profiles. Moreover, the authors investigated in which way the Doppler spread affects the performance with regard to the transmission distance. © 2009 The Institution of Engineering and Technology. |
en |
heal.publisher |
INST ENGINEERING TECHNOLOGY-IET |
en |
heal.journalName |
IET Intelligent Transport Systems |
en |
dc.identifier.doi |
10.1049/iet-its.2008.0070 |
en |
dc.identifier.isi |
ISI:000273044900007 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
429 |
en |
dc.identifier.epage |
436 |
en |