dc.contributor.author |
Mavrotas, G |
en |
dc.contributor.author |
Figueira, JR |
en |
dc.contributor.author |
Florios, K |
en |
dc.date.accessioned |
2014-03-01T01:31:57Z |
|
dc.date.available |
2014-03-01T01:31:57Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/19986 |
|
dc.subject |
Core |
en |
dc.subject |
Knapsack |
en |
dc.subject |
Multi-dimensional |
en |
dc.subject |
Multi-objective programming |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Branch-and-bound algorithms |
en |
dc.subject.other |
Computational experiment |
en |
dc.subject.other |
Core |
en |
dc.subject.other |
Core problems |
en |
dc.subject.other |
Divide and conquer |
en |
dc.subject.other |
Exact solution |
en |
dc.subject.other |
Integer programming problems |
en |
dc.subject.other |
Knapsack |
en |
dc.subject.other |
Medium size |
en |
dc.subject.other |
Multi objective |
en |
dc.subject.other |
Multi-criteria |
en |
dc.subject.other |
Multi-dimensional |
en |
dc.subject.other |
Multi-objective programming |
en |
dc.subject.other |
Multidimensional knapsack problems |
en |
dc.subject.other |
Pareto set |
en |
dc.subject.other |
Quality of solution |
en |
dc.subject.other |
Solution time |
en |
dc.subject.other |
Sub-problems |
en |
dc.subject.other |
Trade off |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Benchmarking |
en |
dc.subject.other |
Computer software selection and evaluation |
en |
dc.subject.other |
Dynamic programming |
en |
dc.subject.other |
Integer programming |
en |
dc.subject.other |
Linear programming |
en |
dc.subject.other |
Multiobjective optimization |
en |
dc.subject.other |
Problem solving |
en |
dc.title |
Solving the bi-objective multi-dimensional knapsack problem exploiting the concept of core |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.amc.2009.08.045 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.amc.2009.08.045 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
This paper deals with the bi-objective multi-dimensional knapsack problem. We propose the adaptation of the core concept that is effectively used in single-objective multi-dimensional knapsack problems. The main idea of the core concept is based on the ""divide and conquer"" principle. Namely, instead of solving one problem with n variables we solve several sub-problems with a fraction of n variables (core variables). The quality of the obtained solution can be adjusted according to the size of the core and there is always a trade off between the solution time and the quality of solution. In the specific study we define the core problem for the multi-objective multi-dimensional knapsack problem. After defining the core we solve the bi-objective integer programming that comprises only the core variables using the Multicriteria Branch and Bound algorithm that can generate the complete Pareto set in small and medium size multi-objective integer programming problems. A small example is used to illustrate the method while computational and economy issues are also discussed. Computational experiments are also presented using available or appropriately modified benchmarks in order to examine the quality of Pareto set approximation with respect to the solution time. Extensions to the general multi-objective case as well as to the computation of the exact solution are also mentioned. © 2009 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematics and Computation |
en |
dc.identifier.doi |
10.1016/j.amc.2009.08.045 |
en |
dc.identifier.isi |
ISI:000271640200012 |
en |
dc.identifier.volume |
215 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
2502 |
en |
dc.identifier.epage |
2514 |
en |