HEAL DSpace

Solving the bi-objective multi-dimensional knapsack problem exploiting the concept of core

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mavrotas, G en
dc.contributor.author Figueira, JR en
dc.contributor.author Florios, K en
dc.date.accessioned 2014-03-01T01:31:57Z
dc.date.available 2014-03-01T01:31:57Z
dc.date.issued 2009 en
dc.identifier.issn 0096-3003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/19986
dc.subject Core en
dc.subject Knapsack en
dc.subject Multi-dimensional en
dc.subject Multi-objective programming en
dc.subject.classification Mathematics, Applied en
dc.subject.other Branch-and-bound algorithms en
dc.subject.other Computational experiment en
dc.subject.other Core en
dc.subject.other Core problems en
dc.subject.other Divide and conquer en
dc.subject.other Exact solution en
dc.subject.other Integer programming problems en
dc.subject.other Knapsack en
dc.subject.other Medium size en
dc.subject.other Multi objective en
dc.subject.other Multi-criteria en
dc.subject.other Multi-dimensional en
dc.subject.other Multi-objective programming en
dc.subject.other Multidimensional knapsack problems en
dc.subject.other Pareto set en
dc.subject.other Quality of solution en
dc.subject.other Solution time en
dc.subject.other Sub-problems en
dc.subject.other Trade off en
dc.subject.other Algorithms en
dc.subject.other Benchmarking en
dc.subject.other Computer software selection and evaluation en
dc.subject.other Dynamic programming en
dc.subject.other Integer programming en
dc.subject.other Linear programming en
dc.subject.other Multiobjective optimization en
dc.subject.other Problem solving en
dc.title Solving the bi-objective multi-dimensional knapsack problem exploiting the concept of core en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.amc.2009.08.045 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.amc.2009.08.045 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract This paper deals with the bi-objective multi-dimensional knapsack problem. We propose the adaptation of the core concept that is effectively used in single-objective multi-dimensional knapsack problems. The main idea of the core concept is based on the ""divide and conquer"" principle. Namely, instead of solving one problem with n variables we solve several sub-problems with a fraction of n variables (core variables). The quality of the obtained solution can be adjusted according to the size of the core and there is always a trade off between the solution time and the quality of solution. In the specific study we define the core problem for the multi-objective multi-dimensional knapsack problem. After defining the core we solve the bi-objective integer programming that comprises only the core variables using the Multicriteria Branch and Bound algorithm that can generate the complete Pareto set in small and medium size multi-objective integer programming problems. A small example is used to illustrate the method while computational and economy issues are also discussed. Computational experiments are also presented using available or appropriately modified benchmarks in order to examine the quality of Pareto set approximation with respect to the solution time. Extensions to the general multi-objective case as well as to the computation of the exact solution are also mentioned. © 2009 Elsevier Inc. All rights reserved. en
heal.publisher ELSEVIER SCIENCE INC en
heal.journalName Applied Mathematics and Computation en
dc.identifier.doi 10.1016/j.amc.2009.08.045 en
dc.identifier.isi ISI:000271640200012 en
dc.identifier.volume 215 en
dc.identifier.issue 7 en
dc.identifier.spage 2502 en
dc.identifier.epage 2514 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής