HEAL DSpace

Stress field in actin gel growing on spherical substrate

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dafalias, YF en
dc.contributor.author Pitouras, Z en
dc.date.accessioned 2014-03-01T01:31:59Z
dc.date.available 2014-03-01T01:31:59Z
dc.date.issued 2009 en
dc.identifier.issn 1617-7959 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20004
dc.subject.classification Biophysics en
dc.subject.classification Engineering, Biomedical en
dc.subject.other Biomimetics en
dc.subject.other Chemical reactions en
dc.subject.other Cytology en
dc.subject.other Elasticity en
dc.subject.other Functional polymers en
dc.subject.other Gelation en
dc.subject.other Gels en
dc.subject.other Growth (materials) en
dc.subject.other Monomers en
dc.subject.other Poisson ratio en
dc.subject.other Polymerization en
dc.subject.other Polymers en
dc.subject.other Spheres en
dc.subject.other Strain en
dc.subject.other Actin filaments en
dc.subject.other Bio mimetic en
dc.subject.other Elastic materials en
dc.subject.other Finite straining en
dc.subject.other Gel growth en
dc.subject.other Gel medium en
dc.subject.other In-vitro en
dc.subject.other Latex beads en
dc.subject.other Mechanical coupling en
dc.subject.other Non-linear en
dc.subject.other Poisson en
dc.subject.other Radial directions en
dc.subject.other Small strains en
dc.subject.other Strain levels en
dc.subject.other Stress equilibrium en
dc.subject.other Stress fields en
dc.subject.other Stress variations en
dc.subject.other Unit vectors en
dc.subject.other Stresses en
dc.subject.other actin en
dc.subject.other molecular motor en
dc.subject.other article en
dc.subject.other binding site en
dc.subject.other chemical model en
dc.subject.other chemical structure en
dc.subject.other chemistry en
dc.subject.other computer simulation en
dc.subject.other crystallization en
dc.subject.other dimerization en
dc.subject.other gel en
dc.subject.other mechanical stress en
dc.subject.other methodology en
dc.subject.other protein binding en
dc.subject.other ultrastructure en
dc.subject.other young modulus en
dc.subject.other Actins en
dc.subject.other Binding Sites en
dc.subject.other Computer Simulation en
dc.subject.other Crystallization en
dc.subject.other Dimerization en
dc.subject.other Elastic Modulus en
dc.subject.other Gels en
dc.subject.other Models, Chemical en
dc.subject.other Models, Molecular en
dc.subject.other Molecular Motor Proteins en
dc.subject.other Protein Binding en
dc.subject.other Stress, Mechanical en
dc.title Stress field in actin gel growing on spherical substrate en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10237-007-0113-y en
heal.identifier.secondary http://dx.doi.org/10.1007/s10237-007-0113-y en
heal.language English en
heal.publicationDate 2009 en
heal.abstract Polymerization of actin to form an elastic gel is one of the main mechanisms responsible for cellular motility. The particular problem addressed here stems from the need to model theoretically the growth of actin gel under controlled conditions, as observed in experiments. A biomimetic in vitro system which consists of a spherical latex bead, coated by the enzymatic protein ActA, and a reconstituted cytoplasm within which such beads are placed, induces polymerization of actin on the surface of the bead in the form of successive elastic thin spherical layers. Each newly formed layer pushes outward, and is pushed inward by, the already formed spherical layers which altogether constitute an elastic spherical shell of thickness h varying with time. Thus, a stress field is created in the shell which in turn affects the rate of polymerization as well as that of dissociation of actin gel. Given this bio-chemo-mechanical coupling, the accurate determination of the stress field becomes a subject of great importance for the understanding of the process, and it is the main objective of this work. The problem is addressed by first assuming appropriate constitutive laws for the actin gel elastic material, and then solving the only non-trivial stress equilibrium differential equation along the radial direction assuming spherical symmetry. A linear and a non-linear constitutive model for isotropic elasticity is used, appropriate for small and finite strains, respectively, and the solution is found in closed analytical forms in both cases. Two important conclusions are reached. First, the stress field depends strongly on the compressibility of the actin gel medium via the value of the Poisson ratio, for both linear and non-linear analysis. Second, the linear and non-linear solutions are very close for small strains, but they diverge progressively as the strains increase from small to large. Guided by available experimental data on the observed strain levels, the analytical results are illustrated by selected graphs of stress variation along the radial direction. At the end some comments and suggestions on the bio-chemo-mechanical coupling of actin gel growth and resorption are presented, where the role of properly defined joint isotropic invariants of stress and a unit vector along the predominant direction of free ends of actin filaments at the polymerization site is introduced. © 2007 Springer-Verlag. en
heal.publisher SPRINGER HEIDELBERG en
heal.journalName Biomechanics and Modeling in Mechanobiology en
dc.identifier.doi 10.1007/s10237-007-0113-y en
dc.identifier.isi ISI:000262532800002 en
dc.identifier.volume 8 en
dc.identifier.issue 1 en
dc.identifier.spage 9 en
dc.identifier.epage 24 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής