dc.contributor.author | Dafalias, YF | en |
dc.contributor.author | Pitouras, Z | en |
dc.date.accessioned | 2014-03-01T01:31:59Z | |
dc.date.available | 2014-03-01T01:31:59Z | |
dc.date.issued | 2009 | en |
dc.identifier.issn | 1617-7959 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/20004 | |
dc.subject.classification | Biophysics | en |
dc.subject.classification | Engineering, Biomedical | en |
dc.subject.other | Biomimetics | en |
dc.subject.other | Chemical reactions | en |
dc.subject.other | Cytology | en |
dc.subject.other | Elasticity | en |
dc.subject.other | Functional polymers | en |
dc.subject.other | Gelation | en |
dc.subject.other | Gels | en |
dc.subject.other | Growth (materials) | en |
dc.subject.other | Monomers | en |
dc.subject.other | Poisson ratio | en |
dc.subject.other | Polymerization | en |
dc.subject.other | Polymers | en |
dc.subject.other | Spheres | en |
dc.subject.other | Strain | en |
dc.subject.other | Actin filaments | en |
dc.subject.other | Bio mimetic | en |
dc.subject.other | Elastic materials | en |
dc.subject.other | Finite straining | en |
dc.subject.other | Gel growth | en |
dc.subject.other | Gel medium | en |
dc.subject.other | In-vitro | en |
dc.subject.other | Latex beads | en |
dc.subject.other | Mechanical coupling | en |
dc.subject.other | Non-linear | en |
dc.subject.other | Poisson | en |
dc.subject.other | Radial directions | en |
dc.subject.other | Small strains | en |
dc.subject.other | Strain levels | en |
dc.subject.other | Stress equilibrium | en |
dc.subject.other | Stress fields | en |
dc.subject.other | Stress variations | en |
dc.subject.other | Unit vectors | en |
dc.subject.other | Stresses | en |
dc.subject.other | actin | en |
dc.subject.other | molecular motor | en |
dc.subject.other | article | en |
dc.subject.other | binding site | en |
dc.subject.other | chemical model | en |
dc.subject.other | chemical structure | en |
dc.subject.other | chemistry | en |
dc.subject.other | computer simulation | en |
dc.subject.other | crystallization | en |
dc.subject.other | dimerization | en |
dc.subject.other | gel | en |
dc.subject.other | mechanical stress | en |
dc.subject.other | methodology | en |
dc.subject.other | protein binding | en |
dc.subject.other | ultrastructure | en |
dc.subject.other | young modulus | en |
dc.subject.other | Actins | en |
dc.subject.other | Binding Sites | en |
dc.subject.other | Computer Simulation | en |
dc.subject.other | Crystallization | en |
dc.subject.other | Dimerization | en |
dc.subject.other | Elastic Modulus | en |
dc.subject.other | Gels | en |
dc.subject.other | Models, Chemical | en |
dc.subject.other | Models, Molecular | en |
dc.subject.other | Molecular Motor Proteins | en |
dc.subject.other | Protein Binding | en |
dc.subject.other | Stress, Mechanical | en |
dc.title | Stress field in actin gel growing on spherical substrate | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1007/s10237-007-0113-y | en |
heal.identifier.secondary | http://dx.doi.org/10.1007/s10237-007-0113-y | en |
heal.language | English | en |
heal.publicationDate | 2009 | en |
heal.abstract | Polymerization of actin to form an elastic gel is one of the main mechanisms responsible for cellular motility. The particular problem addressed here stems from the need to model theoretically the growth of actin gel under controlled conditions, as observed in experiments. A biomimetic in vitro system which consists of a spherical latex bead, coated by the enzymatic protein ActA, and a reconstituted cytoplasm within which such beads are placed, induces polymerization of actin on the surface of the bead in the form of successive elastic thin spherical layers. Each newly formed layer pushes outward, and is pushed inward by, the already formed spherical layers which altogether constitute an elastic spherical shell of thickness h varying with time. Thus, a stress field is created in the shell which in turn affects the rate of polymerization as well as that of dissociation of actin gel. Given this bio-chemo-mechanical coupling, the accurate determination of the stress field becomes a subject of great importance for the understanding of the process, and it is the main objective of this work. The problem is addressed by first assuming appropriate constitutive laws for the actin gel elastic material, and then solving the only non-trivial stress equilibrium differential equation along the radial direction assuming spherical symmetry. A linear and a non-linear constitutive model for isotropic elasticity is used, appropriate for small and finite strains, respectively, and the solution is found in closed analytical forms in both cases. Two important conclusions are reached. First, the stress field depends strongly on the compressibility of the actin gel medium via the value of the Poisson ratio, for both linear and non-linear analysis. Second, the linear and non-linear solutions are very close for small strains, but they diverge progressively as the strains increase from small to large. Guided by available experimental data on the observed strain levels, the analytical results are illustrated by selected graphs of stress variation along the radial direction. At the end some comments and suggestions on the bio-chemo-mechanical coupling of actin gel growth and resorption are presented, where the role of properly defined joint isotropic invariants of stress and a unit vector along the predominant direction of free ends of actin filaments at the polymerization site is introduced. © 2007 Springer-Verlag. | en |
heal.publisher | SPRINGER HEIDELBERG | en |
heal.journalName | Biomechanics and Modeling in Mechanobiology | en |
dc.identifier.doi | 10.1007/s10237-007-0113-y | en |
dc.identifier.isi | ISI:000262532800002 | en |
dc.identifier.volume | 8 | en |
dc.identifier.issue | 1 | en |
dc.identifier.spage | 9 | en |
dc.identifier.epage | 24 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |