HEAL DSpace

Synergy between object recognition and image segmentation using the expectation-maximization algorithm

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokkinos, I en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:32:01Z
dc.date.available 2014-03-01T01:32:01Z
dc.date.issued 2009 en
dc.identifier.issn 0162-8828 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20021
dc.subject Active Appearance Models en
dc.subject Curve evolution en
dc.subject Enerative models en
dc.subject Expectation Maximization en
dc.subject Image segmentation en
dc.subject Object recognition en
dc.subject Top--down segmentation en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Active Appearance Models en
dc.subject.other Curve evolution en
dc.subject.other Enerative models en
dc.subject.other Expectation Maximization en
dc.subject.other Expectation-maximization algorithms en
dc.subject.other Fitting equations en
dc.subject.other Image segments en
dc.subject.other Joint segmentation en
dc.subject.other Object Detection en
dc.subject.other Object model en
dc.subject.other Over segmentation en
dc.subject.other Segmentation algorithms en
dc.subject.other Segmentation informations en
dc.subject.other Segmentation results en
dc.subject.other Shape priors en
dc.subject.other Systematic experiment en
dc.subject.other Topdown en
dc.subject.other Algorithms en
dc.subject.other Digital image storage en
dc.subject.other Feature extraction en
dc.subject.other Image reconstruction en
dc.subject.other Image segmentation en
dc.subject.other Maximum principle en
dc.subject.other Optimization en
dc.subject.other Object recognition en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other artificial intelligence en
dc.subject.other automated pattern recognition en
dc.subject.other face en
dc.subject.other histology en
dc.subject.other human en
dc.subject.other image processing en
dc.subject.other methodology en
dc.subject.other roc curve en
dc.subject.other Algorithms en
dc.subject.other Artificial Intelligence en
dc.subject.other Face en
dc.subject.other Humans en
dc.subject.other Image Processing, Computer-Assisted en
dc.subject.other Pattern Recognition, Automated en
dc.subject.other ROC Curve en
dc.title Synergy between object recognition and image segmentation using the expectation-maximization algorithm en
heal.type journalArticle en
heal.identifier.primary 10.1109/TPAMI.2008.158 en
heal.identifier.secondary http://dx.doi.org/10.1109/TPAMI.2008.158 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this work, we formulate the interaction between image segmentation and object recognition in the framework of the Expectation-Maximization (EM) algorithm. We consider segmentation as the assignment of image observations to object hypotheses and phrase it as the E-step, while the M-step amounts to fitting the object models to the observations. These two tasks are performed iteratively, thereby simultaneously segmenting an image and reconstructing it in terms of objects. We model objects using Active Appearance Models (AAMs) as they capture both shape and appearance variation. During the E-step, the fidelity of the AAM predictions to the image is used to decide about assigning observations to the object. For this, we propose two top-down segmentation algorithms. The first starts with an oversegmentation of the image and then softly assigns image segments to objects, as in the common setting of EM. The second uses curve evolution to minimize a criterion derived from the variational interpretation of EM and introduces AAMs as shape priors. For the M-step, we derive AAM fitting equations that accommodate segmentation information, thereby allowing for the automated treatment of occlusions. Apart from top-down segmentation results, we provide systematic experiments on object detection that validate the merits of our joint segmentation and recognition approach. © 2009 IEEE. en
heal.publisher IEEE COMPUTER SOC en
heal.journalName IEEE Transactions on Pattern Analysis and Machine Intelligence en
dc.identifier.doi 10.1109/TPAMI.2008.158 en
dc.identifier.isi ISI:000267050600011 en
dc.identifier.volume 31 en
dc.identifier.issue 8 en
dc.identifier.spage 1486 en
dc.identifier.epage 1501 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής