HEAL DSpace

Texture analysis and segmentation using modulation features, generative models, and weighted curve evolution

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokkinos, I en
dc.contributor.author Evangelopoulos, G en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:32:02Z
dc.date.available 2014-03-01T01:32:02Z
dc.date.issued 2009 en
dc.identifier.issn 0162-8828 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20032
dc.subject AM-FM models en
dc.subject Cue combination en
dc.subject Curve evolution en
dc.subject Demodulation en
dc.subject Edge and feature detection en
dc.subject Generative models en
dc.subject Image models en
dc.subject Image processing and computer vision en
dc.subject Image segmentation en
dc.subject Segmentation en
dc.subject Statistical en
dc.subject Texture en
dc.subject Texture analysis en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Amplitude modulation en
dc.subject.other Computer vision en
dc.subject.other Demodulation en
dc.subject.other Digital image storage en
dc.subject.other Feature extraction en
dc.subject.other Image analysis en
dc.subject.other Image enhancement en
dc.subject.other Image processing en
dc.subject.other Image retrieval en
dc.subject.other Image segmentation en
dc.subject.other Modulation en
dc.subject.other Optical variables measurement en
dc.subject.other Probability en
dc.subject.other Textures en
dc.subject.other AM-FM models en
dc.subject.other Cue combination en
dc.subject.other Curve evolution en
dc.subject.other Edge and feature detection en
dc.subject.other Generative models en
dc.subject.other Image models en
dc.subject.other Segmentation en
dc.subject.other Statistical en
dc.subject.other Texture analysis en
dc.subject.other Edge detection en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other artificial intelligence en
dc.subject.other automated pattern recognition en
dc.subject.other computer assisted diagnosis en
dc.subject.other computer simulation en
dc.subject.other methodology en
dc.subject.other statistical model en
dc.subject.other three dimensional imaging en
dc.subject.other Algorithms en
dc.subject.other Artificial Intelligence en
dc.subject.other Computer Simulation en
dc.subject.other Image Interpretation, Computer-Assisted en
dc.subject.other Imaging, Three-Dimensional en
dc.subject.other Models, Statistical en
dc.subject.other Pattern Recognition, Automated en
dc.title Texture analysis and segmentation using modulation features, generative models, and weighted curve evolution en
heal.type journalArticle en
heal.identifier.primary 10.1109/TPAMI.2008.33 en
heal.identifier.secondary http://dx.doi.org/10.1109/TPAMI.2008.33 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this work we approach the analysis and segmentation of natural textured images by combining ideas from image analysis and probabilistic modeling. We rely on AM-FM texture models and specifically on the Dominant Component Analysis (DCA) paradigm for feature extraction. This method provides a low-dimensional, dense and smooth descriptor, capturing essential aspects of texture, namely scale, orientation, and contrast. Our contributions are at three levels of the texture analysis and segmentation problems: First, at the feature extraction stage we propose a Regularized Demodulation Algorithm that provides more robust texture features and explore the merits of modifying the channel selection criterion of DCA. Second, we propose a probabilistic interpretation of DCA and Gabor filtering in general, in terms of Local Generative Models. Extending this point of view to edge detection facilitates the estimation of posterior probabilities for the edge and texture classes. Third, we propose the Weighted Curve Evolution scheme that enhances the Region Competition/Geodesic Active Regions methods by allowing for the locally adaptive fusion of heterogeneous cues. Our segmentation results are evaluated on the Berkeley Segmentation Benchmark, and compare favorably to current state-of-the-art methods. © 2009 IEEE. en
heal.publisher IEEE COMPUTER SOC en
heal.journalName IEEE Transactions on Pattern Analysis and Machine Intelligence en
dc.identifier.doi 10.1109/TPAMI.2008.33 en
dc.identifier.isi ISI:000260889700012 en
dc.identifier.volume 31 en
dc.identifier.issue 1 en
dc.identifier.spage 142 en
dc.identifier.epage 157 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής