dc.contributor.author |
Kehagias, A |
en |
dc.contributor.author |
Sfetsos, K |
en |
dc.date.accessioned |
2014-03-01T01:32:03Z |
|
dc.date.available |
2014-03-01T01:32:03Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0370-2693 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20037 |
|
dc.subject |
Black Hole |
en |
dc.subject |
Post Newtonian |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.other |
MASSIVE GAUGE-THEORIES |
en |
dc.subject.other |
INFRARED STABILITY |
en |
dc.subject.other |
ABUNDANCE |
en |
dc.subject.other |
PHYSICS |
en |
dc.title |
The black hole and FRW geometries of non-relativistic gravity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.physletb.2009.06.019 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.physletb.2009.06.019 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We consider the recently proposed non-relativistic Horava-Lifshitz four-dimensional theory of gravity. We study a particular limit of the theory which admits flat Minkowski vacuum and we discuss thoroughly the quadratic fluctuations around it. We find that there are two propagating polarizations of the metric. We then explicitly construct a spherically symmetric, asymptotically flat, black hole solution that represents the analog of the Schwarzschild Solution Of GR. We show that this theory has the same Newtonian and post-Newtonian limits as GR and thus, it passes the classical tests. We also consider homogeneous and isotropic cosmological solutions and we show that although the equations are identical with GR cosmology. the couplings are constrained by the observed primordial abundance of He-4. (C) 2009 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
en |
dc.identifier.doi |
10.1016/j.physletb.2009.06.019 |
en |
dc.identifier.isi |
ISI:000267816100021 |
en |
dc.identifier.volume |
678 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
123 |
en |
dc.identifier.epage |
126 |
en |