HEAL DSpace

The continuous direct-adjoint approach for second order sensitivities in viscous aerodynamic inverse design problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadimitriou, DI en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:32:03Z
dc.date.available 2014-03-01T01:32:03Z
dc.date.issued 2009 en
dc.identifier.issn 0045-7930 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20040
dc.subject Newton Method en
dc.subject Objective Function en
dc.subject Pressure Distribution en
dc.subject Viscous Flow en
dc.subject Direct Differentiation Method en
dc.subject First Order en
dc.subject Second Order en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other DATA ASSIMILATION en
dc.subject.other OPTIMIZATION en
dc.subject.other DERIVATIVES en
dc.title The continuous direct-adjoint approach for second order sensitivities in viscous aerodynamic inverse design problems en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compfluid.2008.12.007 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compfluid.2008.12.007 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract A novel continuous adjoint approach for the computation of the second order sensitivities of the objective function used in inverse design problems is proposed. In the framework of the Newton method, the proposed approach can be used to efficiently cope with inverse design problems in Viscous flows, where the target is a given pressure distribution along the solid walls. It consists of two steps and will, thus, be referred to as the direct-adjoint approach. At the first step, the direct differentiation method is used to compute the first order sensitivities of the flow variables with respect to the design variables and build the gradient of the objective function. At the second step, the adjoint approach is used to compute the second order sensitivities. The final Hessian expression is free of field integrals and its computation requires the solution of N + 1 equivalent flow (system) Solutions for N design variables. Since the CPU cost of using the Newton method, with exact gradient and Hessian data at each cycle, becomes prohibitively high, an approach that computes the exact Hessian only once and then updates it in an approximated manner through the BFGS formula, is used instead. The accuracy of the Hessian matrix components, computed using the direct-adjoint approach is demonstrated on the inverse design of a diffuser and a cascade airfoil. (C) 2008 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName COMPUTERS & FLUIDS en
dc.identifier.doi 10.1016/j.compfluid.2008.12.007 en
dc.identifier.isi ISI:000267201100005 en
dc.identifier.volume 38 en
dc.identifier.issue 8 en
dc.identifier.spage 1539 en
dc.identifier.epage 1548 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής