dc.contributor.author |
O'Regan, D |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:32:10Z |
|
dc.date.available |
2014-03-01T01:32:10Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20050 |
|
dc.subject |
C-condition |
en |
dc.subject |
Critical groups |
en |
dc.subject |
Noncoercive Euler functional |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
PS-condition |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
C-condition |
en |
dc.subject.other |
Critical groups |
en |
dc.subject.other |
Noncoercive Euler functional |
en |
dc.subject.other |
p-Laplacian |
en |
dc.subject.other |
PS-condition |
en |
dc.subject.other |
Laplace equation |
en |
dc.title |
The existence of two nontrivial solutions via homological local linking for the non-coercive p-Laplacian Neumann problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2008.10.021 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2008.10.021 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper we consider a nonlinear Neumann problem driven by the p-Laplacian and with a Carathéodory right hand side nonlinearity f (z, x). The hypothesis on f (z, x) does not imply the coercivity of the corresponding Euler functional. Using variational arguments and critical groups we show that the problem has at least two nontrivial smooth solutions. © 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2008.10.021 |
en |
dc.identifier.isi |
ISI:000265721400026 |
en |
dc.identifier.volume |
70 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
4386 |
en |
dc.identifier.epage |
4392 |
en |