HEAL DSpace

The influence of the self-consistent mode structure on the coriolis pinch effect

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Peeters, AG en
dc.contributor.author Angioni, C en
dc.contributor.author Camenen, Y en
dc.contributor.author Casson, FJ en
dc.contributor.author Hornsby, WA en
dc.contributor.author Snodin, AP en
dc.contributor.author Strintzi, D en
dc.date.accessioned 2014-03-01T01:32:10Z
dc.date.available 2014-03-01T01:32:10Z
dc.date.issued 2009 en
dc.identifier.issn 1070-664X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20053
dc.subject drift instability en
dc.subject perturbation theory en
dc.subject pinch effect en
dc.subject plasma simulation en
dc.subject plasma toroidal confinement en
dc.subject Tokamak devices en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other Collisionality en
dc.subject.other Coriolis en
dc.subject.other Drift effects en
dc.subject.other Eigen modes en
dc.subject.other Electron trapping en
dc.subject.other Electrostatic potentials en
dc.subject.other Gyrokinetic simulations en
dc.subject.other Inverse aspect ratio en
dc.subject.other Kinetic electrons en
dc.subject.other Low-field sides en
dc.subject.other Mode structure en
dc.subject.other Pinch velocity en
dc.subject.other Toroidal geometry en
dc.subject.other Trapped electrons en
dc.subject.other Trapped particle en
dc.subject.other Wave vector en
dc.subject.other Aspect ratio en
dc.subject.other Electron traps en
dc.subject.other Magnetohydrodynamics en
dc.subject.other Pinch effect en
dc.subject.other Plasma theory en
dc.subject.other Tokamak devices en
dc.subject.other Velocity en
dc.subject.other Electrons en
dc.title The influence of the self-consistent mode structure on the coriolis pinch effect en
heal.type journalArticle en
heal.identifier.primary 10.1063/1.3124133 en
heal.identifier.secondary http://dx.doi.org/10.1063/1.3124133 en
heal.identifier.secondary 062311 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract This paper discusses the effect of the mode structure on the Coriolis pinch effect [A. G. Peeters, C. Angioni, and D. Strintzi, Phys. Rev. Lett. 98, 265003 (2007)]. It is shown that the Coriolis drift effect can be compensated for by a finite parallel wave vector, resulting in a reduced momentum pinch velocity. Gyrokinetic simulations in full toroidal geometry reveal that parallel dynamics effectively removes the Coriolis pinch for the case of adiabatic electrons, while the compensation due to the parallel dynamics is incomplete for the case of kinetic electrons, resulting in a finite pinch velocity. The finite flux in the case of kinetic electrons is interpreted to be related to the electron trapping, which prevents a strong asymmetry in the electrostatic potential with respect to the low field side position. The physics picture developed here leads to the discovery and explanation of two unexpected effects: First the pinch velocity scales with the trapped particle fraction (root of the inverse aspect ratio), and second there is no strong collisionality dependence. The latter is related to the role of the trapped electrons, which retain some symmetry in the eigenmode, but play no role in the perturbed parallel velocity. © 2009 American Institute of Physics. en
heal.publisher AMER INST PHYSICS en
heal.journalName Physics of Plasmas en
dc.identifier.doi 10.1063/1.3124133 en
dc.identifier.isi ISI:000267599400024 en
dc.identifier.volume 16 en
dc.identifier.issue 6 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής