dc.contributor.author |
Peeters, AG |
en |
dc.contributor.author |
Camenen, Y |
en |
dc.contributor.author |
Casson, FJ |
en |
dc.contributor.author |
Hornsby, WA |
en |
dc.contributor.author |
Snodin, AP |
en |
dc.contributor.author |
Strintzi, D |
en |
dc.contributor.author |
Szepesi, G |
en |
dc.date.accessioned |
2014-03-01T01:32:10Z |
|
dc.date.available |
2014-03-01T01:32:10Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0010-4655 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20059 |
|
dc.subject |
Drift wave |
en |
dc.subject |
Flux tube |
en |
dc.subject |
Gyro-kinetic |
en |
dc.subject |
Plasma turbulence |
en |
dc.subject |
Tokamak |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
Catalogue identifiers |
en |
dc.subject.other |
Code structure |
en |
dc.subject.other |
Distributed program |
en |
dc.subject.other |
Drift wave |
en |
dc.subject.other |
Electromagnetic effects |
en |
dc.subject.other |
Explicit time integration |
en |
dc.subject.other |
Finite difference |
en |
dc.subject.other |
Flux tube |
en |
dc.subject.other |
Flux tubes |
en |
dc.subject.other |
FORTRAN 95 |
en |
dc.subject.other |
Grid points |
en |
dc.subject.other |
Gyro-kinetic |
en |
dc.subject.other |
Ireland |
en |
dc.subject.other |
Kinetic electrons |
en |
dc.subject.other |
Kinetic equations |
en |
dc.subject.other |
Kinetic fluxes |
en |
dc.subject.other |
Kinetic models |
en |
dc.subject.other |
Kinetic simulation |
en |
dc.subject.other |
Linear problems |
en |
dc.subject.other |
Linear-run |
en |
dc.subject.other |
Magnetic confinement |
en |
dc.subject.other |
Magnetic effects |
en |
dc.subject.other |
MHD equilibrium |
en |
dc.subject.other |
Microinstabilities |
en |
dc.subject.other |
Moving systems |
en |
dc.subject.other |
Nonlinear kinetics |
en |
dc.subject.other |
Operating systems |
en |
dc.subject.other |
Plasma rotations |
en |
dc.subject.other |
Programming language |
en |
dc.subject.other |
Running time |
en |
dc.subject.other |
Solution methods |
en |
dc.subject.other |
State of the art |
en |
dc.subject.other |
Test data |
en |
dc.subject.other |
Tokamak |
en |
dc.subject.other |
Tokamak geometry |
en |
dc.subject.other |
Vlasov equation |
en |
dc.subject.other |
Computational geometry |
en |
dc.subject.other |
Computer operating systems |
en |
dc.subject.other |
Fusion reactors |
en |
dc.subject.other |
Gyroscopes |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Kinetic theory |
en |
dc.subject.other |
Magnetohydrodynamics |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Plasma confinement |
en |
dc.subject.other |
Plasma diagnostics |
en |
dc.subject.other |
Plasma stability |
en |
dc.subject.other |
Plasma theory |
en |
dc.subject.other |
Plasma turbulence |
en |
dc.subject.other |
Plasma waves |
en |
dc.subject.other |
Problem oriented languages |
en |
dc.subject.other |
Program compilers |
en |
dc.subject.other |
Test facilities |
en |
dc.subject.other |
Tubes (components) |
en |
dc.subject.other |
FORTRAN (programming language) |
en |
dc.title |
The nonlinear gyro-kinetic flux tube code GKW |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.cpc.2009.07.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.cpc.2009.07.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A new nonlinear gyro-kinetic flux tube code (GKW) for the simulation of micro instabilities and turbulence in magnetic confinement plasmas is presented in this paper. The code incorporates all physics effects that can be expected from a state of the art gyro-kinetic simulation code in the local limit: kinetic electrons, electromagnetic effects. collisions. full general geometry with a coupling to a MHD equilibrium code, and E x B shearing. In addition the physics of plasma rotation has been implemented through a formulation of the gyro-kinetic equation in the co-moving system. The gyro-kinetic model is fivedimensional and requires a massive parallel approach. GKW has been parallelised using MPI and scales well up to 8192+ cores. The paper presents the set of equations solved, the numerical methods, the code structure, and the essential benchmarks. Program summary Program title: GKW Catalogue identifier: AEES_vI_0 Program summary URL: http://cpc.cs.qLib.ac.uk/summaries/AEES-vl-O.html Program obtainablefrom: CK Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL v3 No. of lines in distributed program, including test data, etc.: 29998 No. of bytes in distributed program, including test data, etc.: 206943 Distribution format. tar.gz Programming language: Fortran 95 Computer: Not computer specific Operating system: Any for which a Fortran 95 compiler is available Has the code been vectorised or parallelised?: Yes. The program can efficiently utilise 8192+ processors, depending on problem and available computer. 128 processors is reasonable for a typical nonlinear kinetic run on the latest x86-64 machines. RAM: similar to 128 MB-1 GB for a linear run; 25 GB for typical nonlinear kinetic run (30 million grid points) Classification: 19.8, 19.9, 19.11 External routines: None required, although the functionality of the program is somewhat limited without a MPI implementation (preferably MPI-2) and the FFTW3 library. Nature of problem: Five-dimensional gyro-kinetic Vlasov equation in general flux tube tokamak geometry with kinetic electrons, electro-magnetic effects and collisions Solution method: Pseudo-spectral and finite difference with explicit time integration Additional comments: The MHD equilibrium code CHEASE [1] is used for the general geometry calculations. This code has been developed in CRPP Lausanne and is not distributed together with GKW, but can be downloaded separately. The geometry module of GKW is based on the version 7.1 of CHEASE, which includes the output for Hamada coordinates. Runningtime: (On recent x86-64 hardware) -10 minutes for a short linear problem; 48 hours for typical nonlinear kinetic run. Reference: [1] H. Lutjens, A. Bondeson, O. Sauter, Comput. Phys. Comm. 97 (1996) 219, http://cpc.cs.qub.ac.uk/ surnrnaries/ADDH_v1_0.html Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computer Physics Communications |
en |
dc.identifier.doi |
10.1016/j.cpc.2009.07.001 |
en |
dc.identifier.isi |
ISI:000273011500021 |
en |
dc.identifier.volume |
180 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
2650 |
en |
dc.identifier.epage |
2672 |
en |