HEAL DSpace

The scope of artificial neural network metamodels for precision casting process planning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vosniakos, GC en
dc.contributor.author Galiotou, V en
dc.contributor.author Pantelis, D en
dc.contributor.author Benardos, P en
dc.contributor.author Pavlou, P en
dc.date.accessioned 2014-03-01T01:32:11Z
dc.date.available 2014-03-01T01:32:11Z
dc.date.issued 2009 en
dc.identifier.issn 07365845 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20068
dc.subject Casting parameters en
dc.subject Investment casting en
dc.subject Neural networks en
dc.subject.other Area ratios en
dc.subject.other Artificial Neural Network en
dc.subject.other Casting conditions en
dc.subject.other Casting parameters en
dc.subject.other Casting simulation software en
dc.subject.other Expandability en
dc.subject.other Feed-forward artificial neural networks en
dc.subject.other Feeding points en
dc.subject.other Generalisation en
dc.subject.other Input parameter en
dc.subject.other Melting temperatures en
dc.subject.other Meta model en
dc.subject.other Mould temperature en
dc.subject.other Part geometry en
dc.subject.other Predictive capabilities en
dc.subject.other Product quality en
dc.subject.other Simulation result en
dc.subject.other Software simulation en
dc.subject.other Surface area en
dc.subject.other User friendly interface en
dc.subject.other Work pieces en
dc.subject.other Backpropagation en
dc.subject.other Computer software en
dc.subject.other Investment casting en
dc.subject.other Melting point en
dc.subject.other Neural networks en
dc.subject.other Precision casting en
dc.subject.other Process control en
dc.subject.other Process engineering en
dc.subject.other Simulators en
dc.subject.other Investments en
dc.title The scope of artificial neural network metamodels for precision casting process planning en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.rcim.2009.04.018 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.rcim.2009.04.018 en
heal.publicationDate 2009 en
heal.abstract Precision investment casting process planning has been tackled in the past according to experience. Recently, casting simulation software is being increasingly used to predict product quality by implementing 'what-if' scenarios. Input parameters include relatively simple factors such as mould temperature, melting temperature, casting material. They also include factors whose influence is more complex to quantify, such number and location of feeding points, diameter and length of inflow channels, angle of channel with respect to the main sprue axis. Simulation results cannot help the engineer for workpieces other than the one simulated. In this paper a series of feedforward artificial neural network (ANN) models is presented aiming at such generalisation. To achieve this, a large number of software simulation runs were conducted for a number of different small parts, with varying runner geometry and casting conditions. The parameters characterising part geometry have been chosen to be surface area and volume-to-area ratio. The different ANN models predictive capabilities are reflected to the respective training and generalisation errors. A user-friendly interface has been conducted for model execution in a complete application, whose main virtue is expandability. © 2009 Elsevier Ltd. All rights reserved. en
heal.journalName Robotics and Computer-Integrated Manufacturing en
dc.identifier.doi 10.1016/j.rcim.2009.04.018 en
dc.identifier.volume 25 en
dc.identifier.issue 6 en
dc.identifier.spage 909 en
dc.identifier.epage 916 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής