dc.contributor.author |
Vosniakos, GC |
en |
dc.contributor.author |
Galiotou, V |
en |
dc.contributor.author |
Pantelis, D |
en |
dc.contributor.author |
Benardos, P |
en |
dc.contributor.author |
Pavlou, P |
en |
dc.date.accessioned |
2014-03-01T01:32:11Z |
|
dc.date.available |
2014-03-01T01:32:11Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
07365845 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20068 |
|
dc.subject |
Casting parameters |
en |
dc.subject |
Investment casting |
en |
dc.subject |
Neural networks |
en |
dc.subject.other |
Area ratios |
en |
dc.subject.other |
Artificial Neural Network |
en |
dc.subject.other |
Casting conditions |
en |
dc.subject.other |
Casting parameters |
en |
dc.subject.other |
Casting simulation software |
en |
dc.subject.other |
Expandability |
en |
dc.subject.other |
Feed-forward artificial neural networks |
en |
dc.subject.other |
Feeding points |
en |
dc.subject.other |
Generalisation |
en |
dc.subject.other |
Input parameter |
en |
dc.subject.other |
Melting temperatures |
en |
dc.subject.other |
Meta model |
en |
dc.subject.other |
Mould temperature |
en |
dc.subject.other |
Part geometry |
en |
dc.subject.other |
Predictive capabilities |
en |
dc.subject.other |
Product quality |
en |
dc.subject.other |
Simulation result |
en |
dc.subject.other |
Software simulation |
en |
dc.subject.other |
Surface area |
en |
dc.subject.other |
User friendly interface |
en |
dc.subject.other |
Work pieces |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Computer software |
en |
dc.subject.other |
Investment casting |
en |
dc.subject.other |
Melting point |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Precision casting |
en |
dc.subject.other |
Process control |
en |
dc.subject.other |
Process engineering |
en |
dc.subject.other |
Simulators |
en |
dc.subject.other |
Investments |
en |
dc.title |
The scope of artificial neural network metamodels for precision casting process planning |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.rcim.2009.04.018 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.rcim.2009.04.018 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Precision investment casting process planning has been tackled in the past according to experience. Recently, casting simulation software is being increasingly used to predict product quality by implementing 'what-if' scenarios. Input parameters include relatively simple factors such as mould temperature, melting temperature, casting material. They also include factors whose influence is more complex to quantify, such number and location of feeding points, diameter and length of inflow channels, angle of channel with respect to the main sprue axis. Simulation results cannot help the engineer for workpieces other than the one simulated. In this paper a series of feedforward artificial neural network (ANN) models is presented aiming at such generalisation. To achieve this, a large number of software simulation runs were conducted for a number of different small parts, with varying runner geometry and casting conditions. The parameters characterising part geometry have been chosen to be surface area and volume-to-area ratio. The different ANN models predictive capabilities are reflected to the respective training and generalisation errors. A user-friendly interface has been conducted for model execution in a complete application, whose main virtue is expandability. © 2009 Elsevier Ltd. All rights reserved. |
en |
heal.journalName |
Robotics and Computer-Integrated Manufacturing |
en |
dc.identifier.doi |
10.1016/j.rcim.2009.04.018 |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
909 |
en |
dc.identifier.epage |
916 |
en |