dc.contributor.author |
Aizicovici, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Staicu, V |
en |
dc.date.accessioned |
2014-03-01T01:32:11Z |
|
dc.date.available |
2014-03-01T01:32:11Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1078-0947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20069 |
|
dc.subject |
(S)+-operator |
en |
dc.subject |
Crossing nonlinearity |
en |
dc.subject |
Homotopy invariant |
en |
dc.subject |
Index formula |
en |
dc.subject |
Second eigenvalue |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
GLOBAL BIFURCATION |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
OPERATORS |
en |
dc.subject.other |
EIGENVALUES |
en |
dc.title |
The spectrum and an index formula for the Neumann p-Laplacian and multiple solutions for problems with a crossing nonlinearity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3934/dcds.2009.25.431 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3934/dcds.2009.25.431 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper we first conduct a study of the spectrum of the negative p-Laplacian with Neumann boundary conditions. More precisely we investigate the first nonzero eigenvalue. We produce alternative variational characterizations, we examine its dependence on p is an element of (1, infinity) and on the weight function m is an element of L-infinity (Z)(+) and we prove that the isolation of the principal eigenvalue lambda(0) = 0, is uniform for all p in a bounded closed interval. All these results are then used to prove an index formula (jumping theorem) for the d((S)+) -degree map at the first nonzero eigenvalue. Finally the index formula is used to prove a multiplicity result for problems with a multivalued crossing nonlinearity. |
en |
heal.publisher |
AMER INST MATHEMATICAL SCIENCES |
en |
heal.journalName |
Discrete and Continuous Dynamical Systems |
en |
dc.identifier.doi |
10.3934/dcds.2009.25.431 |
en |
dc.identifier.isi |
ISI:000267797500002 |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
431 |
en |
dc.identifier.epage |
456 |
en |