dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:32:12Z |
|
dc.date.available |
2014-03-01T01:32:12Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1534-0392 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20075 |
|
dc.subject |
Critical groups |
en |
dc.subject |
Morse theory |
en |
dc.subject |
Mountain pass theorem |
en |
dc.subject |
Poincaré-hopf formula |
en |
dc.subject |
Scalar p-Laplacian |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
ELLIPTIC PROBLEMS |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
RESONANCE |
en |
dc.subject.other |
INFINITY |
en |
dc.subject.other |
DRIVEN |
en |
dc.title |
Three nontrivial solutions for periodic problems with the p-Laplacian and a p-superlinear nonlinearity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3934/cpaa.2009.8.1421 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3934/cpaa.2009.8.1421 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We consider a nonlinear periodic problem driven by the scalar p-Laplacian and a nonlinearity that exhibits a p-superlinear growth near +/-infinity, but need not satisfy the Ambrosetti-Rabinowitz condition. Using minimax methods, truncations techniques and Morse theory, we show that the problem has at least three nontrivial solutions, two of which are of fixed sign. |
en |
heal.publisher |
AMER INST MATHEMATICAL SCIENCES |
en |
heal.journalName |
Communications on Pure and Applied Analysis |
en |
dc.identifier.doi |
10.3934/cpaa.2009.8.1421 |
en |
dc.identifier.isi |
ISI:000265190400014 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
1421 |
en |
dc.identifier.epage |
1437 |
en |