HEAL DSpace

Two-level, two-objective evolutionary algorithms for solving unit commitment problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgopoulou, CA en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:32:14Z
dc.date.available 2014-03-01T01:32:14Z
dc.date.issued 2009 en
dc.identifier.issn 0306-2619 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20094
dc.subject Unit commitment en
dc.subject Evolutionary algorithms en
dc.subject Multilevel search en
dc.subject Multiobjective optimization en
dc.subject Stochastic power demand distribution en
dc.subject.classification Energy & Fuels en
dc.subject.classification Engineering, Chemical en
dc.subject.other GENETIC ALGORITHM en
dc.subject.other LAGRANGIAN-RELAXATION en
dc.subject.other ECONOMIC-DISPATCH en
dc.subject.other OPTIMIZATION en
dc.subject.other NETWORKS en
dc.subject.other SEARCH en
dc.subject.other SYSTEM en
dc.title Two-level, two-objective evolutionary algorithms for solving unit commitment problems en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.apenergy.2008.08.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.apenergy.2008.08.001 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract A two-level, two-objective optimization scheme based on evolutionary algorithms (EAs) is proposed for solving power generating Unit Commitment (UC) problems by considering stochastic power demand variations. Apart from the total operating cost to cover a known power demand distribution over the scheduling horizon, which is the first objective, the risk of not fulfilling possible demand variations forms the second objective to be minimized. For this kind of problems with a high number of decision variables, conventional EAs become inefficient optimization tools, since they require a high number of evaluations before reaching the optimal solution(s). To considerably reduce the computational burden, a two-level algorithm is proposed. At the low level, a coarsened UC problem is defined and solved using EAs to locate promising solutions at low cost: a strategy for coarsening the UC problem is proposed. Promising solutions migrate upwards to be injected into the high level EA population for further refinement. In addition, at the high level, the scheduling horizon is partitioned in a small number of subperiods of time which are optimized iteratively using EAs, based on objective function(s) penalized to ensure smooth transition from/to the adjacent subperiods. Handling shorter chromosomes due to partitioning increases method's efficiency despite the need for iterating. The proposed two-level method and conventional EAs are compared on representative test problems. (C) 2008 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName APPLIED ENERGY en
dc.identifier.doi 10.1016/j.apenergy.2008.08.001 en
dc.identifier.isi ISI:000265033400029 en
dc.identifier.volume 86 en
dc.identifier.issue 7-8 en
dc.identifier.spage 1229 en
dc.identifier.epage 1239 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής