dc.contributor.author |
Bartha, G |
en |
dc.contributor.author |
Doufexopoulou, M |
en |
dc.contributor.author |
Massinas, B |
en |
dc.date.accessioned |
2014-03-01T01:32:22Z |
|
dc.date.available |
2014-03-01T01:32:22Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1217-8977 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20100 |
|
dc.subject |
Geoidal signal |
en |
dc.subject |
GPS measurements |
en |
dc.subject |
Nonlinear time series analysis |
en |
dc.subject |
Phase space |
en |
dc.subject |
Visual recurrence analysis |
en |
dc.subject.other |
Chaotic behaviors |
en |
dc.subject.other |
Continental scale |
en |
dc.subject.other |
Dynamical model |
en |
dc.subject.other |
Frequency domains |
en |
dc.subject.other |
Motion equations |
en |
dc.subject.other |
Neutral zone |
en |
dc.subject.other |
Nonlinear time-series analysis |
en |
dc.subject.other |
Phase space |
en |
dc.subject.other |
Phase space representation |
en |
dc.subject.other |
Phase spaces |
en |
dc.subject.other |
Recurrence analysis |
en |
dc.subject.other |
Small area |
en |
dc.subject.other |
Time dependent |
en |
dc.subject.other |
Time-delay method |
en |
dc.subject.other |
Chaotic systems |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Global positioning system |
en |
dc.subject.other |
Hamiltonians |
en |
dc.subject.other |
Nonlinear analysis |
en |
dc.subject.other |
Phase space methods |
en |
dc.subject.other |
Time series |
en |
dc.subject.other |
Time series analysis |
en |
dc.subject.other |
geodynamics |
en |
dc.subject.other |
geoid |
en |
dc.subject.other |
GPS |
en |
dc.subject.other |
kinematics |
en |
dc.subject.other |
reconstruction |
en |
dc.subject.other |
time series |
en |
dc.subject.other |
transform |
en |
dc.title |
Use of phase space representation to investigate points of geodynamical interest |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1556/AGeod.44.2009.4.4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1556/AGeod.44.2009.4.4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
The kinematical behavior of points on an area of geodynamical interest is analyzed in a low - dimensional Riemann phase space in contrast to classic approaches that operate in time or frequency domains or in physical space. The phase space is reconstructed from series derived from regularly repeated GPS measurements that were transformed into a unified terrestrial frame. For the reconstruction the time-delay method was used, a concept in nonlinear time series analysis as developed by Packard (Packard et al. 1980) and proved by Takens (Takens 1981). The underlying dynamical model is a Hamiltonian motion equation so the reconstructed space is extended according to holonomic conjugated Hamiltonian coordinates. The GPS measurements are selected from a small area of geodynamical interest after its investigation based on analysis of raw geoidal signals (Doufexopoulou et al. 2006). Points from a neutral zone are used also for comparison purposes. The investigation aims to show that there exist significant differences in essential features of the chaotic behavior of the dynamical systems derived from the points of geodynamical interest and those from the neutral zone (in level of determinism and stability, in attractors, etc.). The method can be used to detect and investigate areas with geodynamical interest where already exist time dependent GPS measurements and at a large, continental scale. |
en |
heal.publisher |
AKADEMIAI KIADO RT |
en |
heal.journalName |
Acta Geodaetica et Geophysica Hungarica |
en |
dc.identifier.doi |
10.1556/AGeod.44.2009.4.4 |
en |
dc.identifier.isi |
ISI:000272763000004 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
419 |
en |
dc.identifier.epage |
427 |
en |