HEAL DSpace

Use of phase space representation to investigate points of geodynamical interest

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bartha, G en
dc.contributor.author Doufexopoulou, M en
dc.contributor.author Massinas, B en
dc.date.accessioned 2014-03-01T01:32:22Z
dc.date.available 2014-03-01T01:32:22Z
dc.date.issued 2009 en
dc.identifier.issn 1217-8977 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20100
dc.subject Geoidal signal en
dc.subject GPS measurements en
dc.subject Nonlinear time series analysis en
dc.subject Phase space en
dc.subject Visual recurrence analysis en
dc.subject.other Chaotic behaviors en
dc.subject.other Continental scale en
dc.subject.other Dynamical model en
dc.subject.other Frequency domains en
dc.subject.other Motion equations en
dc.subject.other Neutral zone en
dc.subject.other Nonlinear time-series analysis en
dc.subject.other Phase space en
dc.subject.other Phase space representation en
dc.subject.other Phase spaces en
dc.subject.other Recurrence analysis en
dc.subject.other Small area en
dc.subject.other Time dependent en
dc.subject.other Time-delay method en
dc.subject.other Chaotic systems en
dc.subject.other Equations of motion en
dc.subject.other Global positioning system en
dc.subject.other Hamiltonians en
dc.subject.other Nonlinear analysis en
dc.subject.other Phase space methods en
dc.subject.other Time series en
dc.subject.other Time series analysis en
dc.subject.other geodynamics en
dc.subject.other geoid en
dc.subject.other GPS en
dc.subject.other kinematics en
dc.subject.other reconstruction en
dc.subject.other time series en
dc.subject.other transform en
dc.title Use of phase space representation to investigate points of geodynamical interest en
heal.type journalArticle en
heal.identifier.primary 10.1556/AGeod.44.2009.4.4 en
heal.identifier.secondary http://dx.doi.org/10.1556/AGeod.44.2009.4.4 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract The kinematical behavior of points on an area of geodynamical interest is analyzed in a low - dimensional Riemann phase space in contrast to classic approaches that operate in time or frequency domains or in physical space. The phase space is reconstructed from series derived from regularly repeated GPS measurements that were transformed into a unified terrestrial frame. For the reconstruction the time-delay method was used, a concept in nonlinear time series analysis as developed by Packard (Packard et al. 1980) and proved by Takens (Takens 1981). The underlying dynamical model is a Hamiltonian motion equation so the reconstructed space is extended according to holonomic conjugated Hamiltonian coordinates. The GPS measurements are selected from a small area of geodynamical interest after its investigation based on analysis of raw geoidal signals (Doufexopoulou et al. 2006). Points from a neutral zone are used also for comparison purposes. The investigation aims to show that there exist significant differences in essential features of the chaotic behavior of the dynamical systems derived from the points of geodynamical interest and those from the neutral zone (in level of determinism and stability, in attractors, etc.). The method can be used to detect and investigate areas with geodynamical interest where already exist time dependent GPS measurements and at a large, continental scale. en
heal.publisher AKADEMIAI KIADO RT en
heal.journalName Acta Geodaetica et Geophysica Hungarica en
dc.identifier.doi 10.1556/AGeod.44.2009.4.4 en
dc.identifier.isi ISI:000272763000004 en
dc.identifier.volume 44 en
dc.identifier.issue 4 en
dc.identifier.spage 419 en
dc.identifier.epage 427 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής