HEAL DSpace

Using visual context and region semantics for high-level concept detection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mylonas, P en
dc.contributor.author Spyrou, E en
dc.contributor.author Avrithis, Y en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:32:23Z
dc.date.available 2014-03-01T01:32:23Z
dc.date.issued 2009 en
dc.identifier.issn 1520-9210 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20103
dc.subject Concept detection en
dc.subject Contextualization en
dc.subject Region thesaurus en
dc.subject Region types en
dc.subject Visual context en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Telecommunications en
dc.subject.other Information theory en
dc.subject.other Semantics en
dc.subject.other Concept detection en
dc.subject.other Contextualization en
dc.subject.other Region thesaurus en
dc.subject.other Region types en
dc.subject.other Visual context en
dc.subject.other Thesauri en
dc.title Using visual context and region semantics for high-level concept detection en
heal.type journalArticle en
heal.identifier.primary 10.1109/TMM.2008.2009681 en
heal.identifier.secondary http://dx.doi.org/10.1109/TMM.2008.2009681 en
heal.identifier.secondary 4757439 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract In this paper we investigate detection of high-level concepts in multimedia content through an integrated approach of visual thesaurus analysis and visual context. In the former, detection is based on model vectors that represent image composition in terms of region types, obtained through clustering over a large data set. The latter deals with two aspects, namely high-level concepts and region types of the thesaurus, employing a model of a priori specified semantic relations among concepts and automatically extracted topological relations among region types; thus it combines both conceptual and topological context. A set of algorithms is presented, which modify either the confidence values of detected concepts, or the model vectors based on which detection is performed. Visual context exploitation is evaluated on TRECVID and Corel data sets and compared to a number of related visual thesaurus approaches. © 2009 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Multimedia en
dc.identifier.doi 10.1109/TMM.2008.2009681 en
dc.identifier.isi ISI:000262714800005 en
dc.identifier.volume 11 en
dc.identifier.issue 2 en
dc.identifier.spage 229 en
dc.identifier.epage 243 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής