dc.contributor.author |
Roussos, G |
en |
dc.contributor.author |
Dimarogonas, DV |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T01:32:25Z |
|
dc.date.available |
2014-03-01T01:32:25Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0890-6327 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20120 |
|
dc.subject |
Air traffic control |
en |
dc.subject |
Collision avoidance |
en |
dc.subject |
Multi-agent systems |
en |
dc.subject |
Nonholonomic control |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
3D navigation |
en |
dc.subject.other |
Artificial potential fields |
en |
dc.subject.other |
Control strategies |
en |
dc.subject.other |
Convergence properties |
en |
dc.subject.other |
Discontinuous feedbacks |
en |
dc.subject.other |
Multi-agent problems |
en |
dc.subject.other |
Navigation functions |
en |
dc.subject.other |
Non holonomic constraint |
en |
dc.subject.other |
Non-holonomic control |
en |
dc.subject.other |
Non-trivial |
en |
dc.subject.other |
Nonholonomic vehicles |
en |
dc.subject.other |
Nonholonomics |
en |
dc.subject.other |
Simulation result |
en |
dc.subject.other |
Single-agent |
en |
dc.subject.other |
Three-dimensional model |
en |
dc.subject.other |
Yaw rotation |
en |
dc.subject.other |
Air navigation |
en |
dc.subject.other |
Air traffic control |
en |
dc.subject.other |
Aircraft accidents |
en |
dc.subject.other |
Airport buildings |
en |
dc.subject.other |
Collision avoidance |
en |
dc.subject.other |
Control theory |
en |
dc.subject.other |
Control towers |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Multi agent systems |
en |
dc.title |
3D navigation and collision avoidance for nonholonomic aircraft-like vehicles |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/acs.1199 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/acs.1199 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
This paper extends the Navigation Function methodology to the case of 3D nonholonomic vehicles, both in single agent and multi-agent problems. The kinematic, nonholonomic, three-dimensional model considered is chosen to resemble the motion of an aircraft by preventing any movement along the lateral or perpendicular axis, as well as preventing high yaw rotation rates. The discontinuous feedback control law used is based on the artificial potential field generated by Dipolar Navigation Functions and steers the agents away from obstacles or each other and towards their destinations, while respecting the nonholonomic constraints present. The convergence properties of the proposed control strategies are formally guaranteed and verified by non-trivial simulation results. Copyright (C) 2010 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal of Adaptive Control and Signal Processing |
en |
dc.identifier.doi |
10.1002/acs.1199 |
en |
dc.identifier.isi |
ISI:000283471000007 |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
900 |
en |
dc.identifier.epage |
920 |
en |