dc.contributor.author |
Moustris, KP |
en |
dc.contributor.author |
Ziomas, IC |
en |
dc.contributor.author |
Paliatsos, AG |
en |
dc.date.accessioned |
2014-03-01T01:32:25Z |
|
dc.date.available |
2014-03-01T01:32:25Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0049-6979 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20121 |
|
dc.subject |
Air pollution forecasting |
en |
dc.subject |
Artificial Neural Networks |
en |
dc.subject |
Athens |
en |
dc.subject |
Greece |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.classification |
Meteorology & Atmospheric Sciences |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Air pressures |
en |
dc.subject.other |
Artificial Neural Network |
en |
dc.subject.other |
Athens |
en |
dc.subject.other |
Athens , Greece |
en |
dc.subject.other |
Concentration trends |
en |
dc.subject.other |
Greater athens area , greece |
en |
dc.subject.other |
Open problems |
en |
dc.subject.other |
Regional pollution |
en |
dc.subject.other |
Solar irradiances |
en |
dc.subject.other |
Statistical significance |
en |
dc.subject.other |
Threshold concentrations |
en |
dc.subject.other |
Air quality |
en |
dc.subject.other |
Atmospheric pressure |
en |
dc.subject.other |
Pollution |
en |
dc.subject.other |
Public works |
en |
dc.subject.other |
Weather forecasting |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
cobalt |
en |
dc.subject.other |
nitrogen dioxide |
en |
dc.subject.other |
ozone |
en |
dc.subject.other |
sulfur dioxide |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
atmospheric pollution |
en |
dc.subject.other |
carbon monoxide |
en |
dc.subject.other |
chemical pollutant |
en |
dc.subject.other |
concentration (composition) |
en |
dc.subject.other |
nitrogen dioxide |
en |
dc.subject.other |
ozone |
en |
dc.subject.other |
pollution monitoring |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
sulfur dioxide |
en |
dc.subject.other |
threshold |
en |
dc.subject.other |
urban pollution |
en |
dc.subject.other |
air pollutant |
en |
dc.subject.other |
air pollution |
en |
dc.subject.other |
air quality |
en |
dc.subject.other |
ambient air |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
atmospheric pressure |
en |
dc.subject.other |
chemical analysis |
en |
dc.subject.other |
concentration (parameters) |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
forecasting |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
meteorological phenomena |
en |
dc.subject.other |
pollution monitoring |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
reliability |
en |
dc.subject.other |
solar radiation |
en |
dc.subject.other |
Athens [Attica] |
en |
dc.subject.other |
Attica |
en |
dc.subject.other |
Greece |
en |
dc.title |
3-day-ahead forecasting of regional pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in athens, Greece |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11270-009-0179-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11270-009-0179-5 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The difficulty in forecasting concentration trends with a reasonable error is still an open problem. In this paper, an effort has been made to this purpose. Artificial Neural Networks are used in order to forecast the maximum daily value of the European Regional Pollution Index as well as the number of consecutive hours, during the day, with at least one of the pollutants above a threshold concentration, 24 to 72 h ahead. The prediction concerns seven different places within the Greater Athens Area, Greece. The meteorological and air pollution data used in this study have been recorded by the network of the Greek Ministry of the Environment, Physical Planning, and Public Works over a 5-year period, 2001-2005. The hourly values of air pressure and global solar irradiance for the same period have been recorded by the National Observatory of Athens. The results are in a very good agreement with the real-monitored data at a statistical significance level of p < 0.01. © 2009 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Water, Air, and Soil Pollution |
en |
dc.identifier.doi |
10.1007/s11270-009-0179-5 |
en |
dc.identifier.isi |
ISI:000277450300004 |
en |
dc.identifier.volume |
209 |
en |
dc.identifier.issue |
1-4 |
en |
dc.identifier.spage |
29 |
en |
dc.identifier.epage |
43 |
en |