dc.contributor.author |
Afantitis, A |
en |
dc.contributor.author |
Melagraki, G |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Koutentis, PA |
en |
dc.contributor.author |
Igglessi-Markopoulou, O |
en |
dc.contributor.author |
Kollias, G |
en |
dc.date.accessioned |
2014-03-01T01:32:25Z |
|
dc.date.available |
2014-03-01T01:32:25Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1381-1991 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20126 |
|
dc.subject |
CXCR3 |
en |
dc.subject |
In silico predictions |
en |
dc.subject |
Molecular modelling |
en |
dc.subject |
QSAR |
en |
dc.subject.classification |
Biochemistry & Molecular Biology |
en |
dc.subject.classification |
Chemistry, Applied |
en |
dc.subject.classification |
Chemistry, Medicinal |
en |
dc.subject.classification |
Chemistry, Multidisciplinary |
en |
dc.subject.other |
antiinflammatory agent |
en |
dc.subject.other |
chemokine receptor CXCR3 |
en |
dc.subject.other |
quinazolinone derivative |
en |
dc.subject.other |
article |
en |
dc.subject.other |
computer model |
en |
dc.subject.other |
IC 50 |
en |
dc.subject.other |
kernel method |
en |
dc.subject.other |
least squares support vector machine |
en |
dc.subject.other |
molecular model |
en |
dc.subject.other |
pharmacophore |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
quantitative structure activity relation |
en |
dc.subject.other |
radial based function |
en |
dc.subject.other |
receptor blocking |
en |
dc.subject.other |
sensitivity and specificity |
en |
dc.subject.other |
support vector machine |
en |
dc.subject.other |
validation study |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
chemical model |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
drug antagonism |
en |
dc.subject.other |
regression analysis |
en |
dc.subject.other |
reproducibility |
en |
dc.subject.other |
statistical model |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Inhibitory Concentration 50 |
en |
dc.subject.other |
Least-Squares Analysis |
en |
dc.subject.other |
Linear Models |
en |
dc.subject.other |
Models, Chemical |
en |
dc.subject.other |
Quantitative Structure-Activity Relationship |
en |
dc.subject.other |
Quinazolinones |
en |
dc.subject.other |
Receptors, CXCR3 |
en |
dc.subject.other |
Reproducibility of Results |
en |
dc.title |
A combined LS-SVM & MLR QSAR workflow for predicting the inhibition of CXCR3 receptor by quinazolinone analogs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11030-009-9163-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11030-009-9163-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
A novel QSAR workflow is constructed that combines MLR with LS-SVM classification techniques for the identification of quinazolinone analogs as "active" or "nonactive" CXCR3 antagonists. The accuracy of the LS-SVM classification technique for the training set and test was 100% and 90%, respectively. For the "active" analogs a validated MLR QSAR model estimates accurately their I-IP10 IC50 inhibition values. The accuracy of the QSAR model (R-2 = 0.80) is illustrated using various evaluation techniques, such as leave-one-out procedure (R-LOO(2) = 0.67) and validation through an external test set (R-pred(2) = 0.78). The key conclusion of this study is that the selected molecular descriptors, Highest Occupied Molecular Orbital energy ( HOMO), Principal Moment of Inertia along X and Y axes PMIX and PMIZ, Polar Surface Area (PSA), Presence of triple bond (PTrplBnd), and Kier shape descriptor ((1)kappa), demonstrate discriminatory and pharmacophore abilities. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Molecular Diversity |
en |
dc.identifier.doi |
10.1007/s11030-009-9163-7 |
en |
dc.identifier.isi |
ISI:000276521000003 |
en |
dc.identifier.volume |
14 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
225 |
en |
dc.identifier.epage |
235 |
en |