dc.contributor.author |
Konstantakopoulos, TG |
en |
dc.contributor.author |
Michaltsos, GT |
en |
dc.date.accessioned |
2014-03-01T01:32:27Z |
|
dc.date.available |
2014-03-01T01:32:27Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0141-0296 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20141 |
|
dc.subject |
Combined cable systems |
en |
dc.subject |
Dynamics of bridges |
en |
dc.subject |
Moving loads |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Cable systems |
en |
dc.subject.other |
Combined cable systems |
en |
dc.subject.other |
Dynamic behaviours |
en |
dc.subject.other |
Long-span bridge |
en |
dc.subject.other |
Moving load |
en |
dc.subject.other |
Stayed cables |
en |
dc.subject.other |
Structural behaviour |
en |
dc.subject.other |
Suspension system |
en |
dc.subject.other |
Theoretical formulation |
en |
dc.subject.other |
Cable stayed bridges |
en |
dc.subject.other |
Cables |
en |
dc.subject.other |
Suspensions (components) |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
bridge |
en |
dc.subject.other |
continuum mechanics |
en |
dc.subject.other |
deformation |
en |
dc.subject.other |
dynamic response |
en |
dc.subject.other |
loading |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
structural response |
en |
dc.title |
A mathematical model for a combined cable system of bridges |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.engstruct.2010.04.042 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.engstruct.2010.04.042 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this study, a mathematical model is proposed to investigate the dynamic behaviour of a combined cable system of bridges under moving loads. The bridge typology is based on both cable-stayed and suspension systems, which are frequently combined to guarantee an improved structural behaviour. The theoretical formulations based on a continuum approach, which has been widely used in the literature to analyse long span bridges. The problem of the allotment of loads in the two kinds of cable systems is confronted through the use of the relations, recently presented, connecting the tensions of the stayed cables to the deformations of the deck. Illustrated examples are presented and useful diagrams are given. (c) 2010 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Engineering Structures |
en |
dc.identifier.doi |
10.1016/j.engstruct.2010.04.042 |
en |
dc.identifier.isi |
ISI:000281995300018 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
2717 |
en |
dc.identifier.epage |
2728 |
en |