dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:32:28Z |
|
dc.date.available |
2014-03-01T01:32:28Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
1536-1365 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20149 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77958039314&partnerID=40&md5=537b4713d22b457c134c4923f38d9703 |
en |
dc.subject |
Critical groups |
en |
dc.subject |
Double resonance |
en |
dc.subject |
Morse theory |
en |
dc.subject |
Mountain pass theorem |
en |
dc.subject |
Multiple solutions |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
ORDINARY DIFFERENTIAL-EQUATIONS |
en |
dc.subject.other |
CRITICAL-POINT THEORY |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
PERTURBATIONS |
en |
dc.subject.other |
NONRESONANCE |
en |
dc.subject.other |
EIGENVALUES |
en |
dc.title |
A multiplicity theorem for double resonant periodic problems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider semilinear periodic ordinary differential equations with the nonlinearity exhibiting double resonance at infinity in the spectral interval [lambda(k), lambda(k+1)], k >= 1. Using minimax methods based on the critical point theory together with Morse theory, we show that the problem has at least four nontrivial solutions. |
en |
heal.publisher |
ADVANCED NONLINEAR STUDIES, INC |
en |
heal.journalName |
Advanced Nonlinear Studies |
en |
dc.identifier.isi |
ISI:000282708000005 |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
819 |
en |
dc.identifier.epage |
836 |
en |