dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Smyrlis, G |
en |
dc.date.accessioned |
2014-03-01T01:32:28Z |
|
dc.date.available |
2014-03-01T01:32:28Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0373-3114 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20150 |
|
dc.subject |
Asymmetric nonlinearity |
en |
dc.subject |
Critical group |
en |
dc.subject |
Maximum principle |
en |
dc.subject |
Morse theory |
en |
dc.subject |
Strong deformation retract |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
INFINITY |
en |
dc.subject.other |
RESONANCE |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
A multiplicity theorem for Neumann problems with asymmetric nonlinearity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10231-009-0108-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10231-009-0108-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We consider a nonlinear Neumann problem with a reaction term which exhibits an asymmetric behavior near +∞ and near -∞. Namely, it is asymptotically superlinear at +∞ and linear at -∞. Using variational methods based on critical point theory, together with truncation techniques and Morse theory, we show that the problem has at least three nontrivial smooth solutions, two of which have constant sign (one positive and the other negative). © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag 2009. |
en |
heal.publisher |
SPRINGER HEIDELBERG |
en |
heal.journalName |
Annali di Matematica Pura ed Applicata |
en |
dc.identifier.doi |
10.1007/s10231-009-0108-7 |
en |
dc.identifier.isi |
ISI:000275544800004 |
en |
dc.identifier.volume |
189 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
253 |
en |
dc.identifier.epage |
272 |
en |