HEAL DSpace

A new algorithm for solving convex parametric quadratic programs based on graphical derivatives of solution mappings

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Patrinos, P en
dc.contributor.author Sarimveis, H en
dc.date.accessioned 2014-03-01T01:32:28Z
dc.date.available 2014-03-01T01:32:28Z
dc.date.issued 2010 en
dc.identifier.issn 0005-1098 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20151
dc.subject Algorithms and software en
dc.subject Control of constrained systems en
dc.subject Parametric optimization en
dc.subject.classification Automation & Control Systems en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Control community en
dc.subject.other Critical region en
dc.subject.other Efficient algorithm en
dc.subject.other Parametric optimization en
dc.subject.other Parametric programming en
dc.subject.other Quadratic programs en
dc.subject.other Theoretical result en
dc.subject.other Algorithms en
dc.subject.other Constrained optimization en
dc.subject.other Electric network parameters en
dc.subject.other Parameter estimation en
dc.title A new algorithm for solving convex parametric quadratic programs based on graphical derivatives of solution mappings en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.automatica.2010.06.008 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.automatica.2010.06.008 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract In this paper we derive formulas for computing graphical derivatives of the (possibly multivalued) solution mapping for convex parametric quadratic programs. Parametric programming has recently received much attention in the control community, however most algorithms are based on the restrictive assumption that the so called critical regions of the solution form a polyhedral subdivision, i.e. the intersection of two critical regions is either empty or a face of both regions. Based on the theoretical results of this paper, we relax this assumption and show how we can efficiently compute all adjacent full dimensional critical regions along a facet of an already discovered critical region. Coupling the proposed approach with the graph traversal paradigm, we obtain very efficient algorithms for the solution of parametric convex quadratic programs. (c) 2010 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Automatica en
dc.identifier.doi 10.1016/j.automatica.2010.06.008 en
dc.identifier.isi ISI:000281991600001 en
dc.identifier.volume 46 en
dc.identifier.issue 9 en
dc.identifier.spage 1405 en
dc.identifier.epage 1418 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής