HEAL DSpace

A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mehleri, ED en
dc.contributor.author Zervas, PL en
dc.contributor.author Sarimveis, H en
dc.contributor.author Palyvos, JA en
dc.contributor.author Markatos, NC en
dc.date.accessioned 2014-03-01T01:32:29Z
dc.date.available 2014-03-01T01:32:29Z
dc.date.issued 2010 en
dc.identifier.issn 0960-1481 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20154
dc.subject Anisotropic models en
dc.subject Hourly slope irradiation models en
dc.subject Isotropic models en
dc.subject Radial basis function (RBF) en
dc.subject.classification Energy & Fuels en
dc.subject.other Anisotropic models en
dc.subject.other Coefficient of determination en
dc.subject.other Diffuse irradiance en
dc.subject.other Horizontal surfaces en
dc.subject.other Hourly slope irradiation models en
dc.subject.other Incidence angles en
dc.subject.other Inclined surface en
dc.subject.other Input datas en
dc.subject.other Isotropic models en
dc.subject.other Mean bias errors en
dc.subject.other Neural network model en
dc.subject.other Neural network techniques en
dc.subject.other Poor performance en
dc.subject.other Radial basis functions en
dc.subject.other Root mean square errors en
dc.subject.other Solar irradiances en
dc.subject.other Solar zenith angle en
dc.subject.other Statistical indices en
dc.subject.other Tilted planes en
dc.subject.other Tilted surface en
dc.subject.other Total solar irradiance en
dc.subject.other Anisotropy en
dc.subject.other Attitude control en
dc.subject.other Block codes en
dc.subject.other Irradiation en
dc.subject.other Mean square error en
dc.subject.other Radial basis function networks en
dc.subject.other Solar radiation en
dc.subject.other Neural networks en
dc.subject.other artificial neural network en
dc.subject.other diffusion en
dc.subject.other irradiation en
dc.subject.other isotropy en
dc.subject.other model test en
dc.subject.other numerical model en
dc.subject.other solar radiation en
dc.subject.other zenith angle en
dc.subject.other Athens [Attica] en
dc.subject.other Attica en
dc.subject.other Greece en
dc.title A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.renene.2009.11.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.renene.2009.11.005 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract The present study is divided into two parts. The first part deals with the comparison of various hourly slope irradiation models, found in the literature, and the selection of the most accurate for the region of Athens. In the second part the prediction of global solar irradiance on inclined surfaces is performed, based on neural network techniques. The models tested are classified as isotropic (Liu and Jordan, Koronakis, Jimenez and Castro, Badescu, Tian) and anisotropic (Bugler, Temps and Coulson, Klucher, Ma and Iqbal, Reindl) based on the treatment of diffuse irradiance. For the aforementioned models, a qualitative comparison, based on diagrams, was carried out, and several statistical indices were calculated (coefficient of determination R2, mean bias error MBE, relative mean bias error MBE/A(%), root mean square error RMSE, relative root mean square error RMSE/A(%),statistical index t-stat), in order to select the optimal. The isotropic models of ""Tian"" and ""Badescu"" show the best accordance to the recorded values. The anisotropic model of ""Ma&Iqbal"" and the pseudo-isotropic model of ""Jimenez&Castro"", show poor performance compared to other models. Finally, a neural network model is developed, which predicts the global solar irradiance on a tilted surface, using as input data the total solar irradiance on a horizontal surface, the extraterrestrial radiation, the solar zenith angle and the solar incidence angle on a tilted plane. The comparison with the aforementioned models has shown that the neural network model, predicts more realistically the total solar irradiance on a tilted surface, as it performs better in regions where the other models show underestimation or overestimation in their calculations. © 2009 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Renewable Energy en
dc.identifier.doi 10.1016/j.renene.2009.11.005 en
dc.identifier.isi ISI:000276082900003 en
dc.identifier.volume 35 en
dc.identifier.issue 7 en
dc.identifier.spage 1357 en
dc.identifier.epage 1362 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής