dc.contributor.author |
Mehleri, ED |
en |
dc.contributor.author |
Zervas, PL |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.contributor.author |
Palyvos, JA |
en |
dc.contributor.author |
Markatos, NC |
en |
dc.date.accessioned |
2014-03-01T01:32:29Z |
|
dc.date.available |
2014-03-01T01:32:29Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0960-1481 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20154 |
|
dc.subject |
Anisotropic models |
en |
dc.subject |
Hourly slope irradiation models |
en |
dc.subject |
Isotropic models |
en |
dc.subject |
Radial basis function (RBF) |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.other |
Anisotropic models |
en |
dc.subject.other |
Coefficient of determination |
en |
dc.subject.other |
Diffuse irradiance |
en |
dc.subject.other |
Horizontal surfaces |
en |
dc.subject.other |
Hourly slope irradiation models |
en |
dc.subject.other |
Incidence angles |
en |
dc.subject.other |
Inclined surface |
en |
dc.subject.other |
Input datas |
en |
dc.subject.other |
Isotropic models |
en |
dc.subject.other |
Mean bias errors |
en |
dc.subject.other |
Neural network model |
en |
dc.subject.other |
Neural network techniques |
en |
dc.subject.other |
Poor performance |
en |
dc.subject.other |
Radial basis functions |
en |
dc.subject.other |
Root mean square errors |
en |
dc.subject.other |
Solar irradiances |
en |
dc.subject.other |
Solar zenith angle |
en |
dc.subject.other |
Statistical indices |
en |
dc.subject.other |
Tilted planes |
en |
dc.subject.other |
Tilted surface |
en |
dc.subject.other |
Total solar irradiance |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Attitude control |
en |
dc.subject.other |
Block codes |
en |
dc.subject.other |
Irradiation |
en |
dc.subject.other |
Mean square error |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Solar radiation |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
diffusion |
en |
dc.subject.other |
irradiation |
en |
dc.subject.other |
isotropy |
en |
dc.subject.other |
model test |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
solar radiation |
en |
dc.subject.other |
zenith angle |
en |
dc.subject.other |
Athens [Attica] |
en |
dc.subject.other |
Attica |
en |
dc.subject.other |
Greece |
en |
dc.title |
A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.renene.2009.11.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.renene.2009.11.005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The present study is divided into two parts. The first part deals with the comparison of various hourly slope irradiation models, found in the literature, and the selection of the most accurate for the region of Athens. In the second part the prediction of global solar irradiance on inclined surfaces is performed, based on neural network techniques. The models tested are classified as isotropic (Liu and Jordan, Koronakis, Jimenez and Castro, Badescu, Tian) and anisotropic (Bugler, Temps and Coulson, Klucher, Ma and Iqbal, Reindl) based on the treatment of diffuse irradiance. For the aforementioned models, a qualitative comparison, based on diagrams, was carried out, and several statistical indices were calculated (coefficient of determination R2, mean bias error MBE, relative mean bias error MBE/A(%), root mean square error RMSE, relative root mean square error RMSE/A(%),statistical index t-stat), in order to select the optimal. The isotropic models of ""Tian"" and ""Badescu"" show the best accordance to the recorded values. The anisotropic model of ""Ma&Iqbal"" and the pseudo-isotropic model of ""Jimenez&Castro"", show poor performance compared to other models. Finally, a neural network model is developed, which predicts the global solar irradiance on a tilted surface, using as input data the total solar irradiance on a horizontal surface, the extraterrestrial radiation, the solar zenith angle and the solar incidence angle on a tilted plane. The comparison with the aforementioned models has shown that the neural network model, predicts more realistically the total solar irradiance on a tilted surface, as it performs better in regions where the other models show underestimation or overestimation in their calculations. © 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Renewable Energy |
en |
dc.identifier.doi |
10.1016/j.renene.2009.11.005 |
en |
dc.identifier.isi |
ISI:000276082900003 |
en |
dc.identifier.volume |
35 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
1357 |
en |
dc.identifier.epage |
1362 |
en |