dc.contributor.author |
Voumvoulakis, EM |
en |
dc.contributor.author |
Hatziargyriou, ND |
en |
dc.date.accessioned |
2014-03-01T01:32:29Z |
|
dc.date.available |
2014-03-01T01:32:29Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0885-8950 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20164 |
|
dc.subject |
Artificial intelligence |
en |
dc.subject |
Corrective control |
en |
dc.subject |
Dynamic security |
en |
dc.subject |
Load shedding |
en |
dc.subject |
Particle swarm optimization |
en |
dc.subject |
Radial basis function neural network |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Added values |
en |
dc.subject.other |
Automatic-learning |
en |
dc.subject.other |
Corrective control |
en |
dc.subject.other |
Corrective control actions |
en |
dc.subject.other |
Dynamic security |
en |
dc.subject.other |
Load-shedding |
en |
dc.subject.other |
Machine learning methods |
en |
dc.subject.other |
Objective functions |
en |
dc.subject.other |
Optimal controls |
en |
dc.subject.other |
Particle swarm optimization method |
en |
dc.subject.other |
Power system dynamics |
en |
dc.subject.other |
Power systems |
en |
dc.subject.other |
Radial basis function neural networks |
en |
dc.subject.other |
Realistic model |
en |
dc.subject.other |
Test systems |
en |
dc.subject.other |
Attitude control |
en |
dc.subject.other |
Electric power systems |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Optical communication |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Particle swarm optimization (PSO) |
en |
dc.title |
A particle swarm optimization method for power system dynamic security control |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TPWRS.2009.2031224 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TPWRS.2009.2031224 |
en |
heal.identifier.secondary |
5291695 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
This paper proposes an automatic learning framework for the dynamic security control of a power system. The proposed method employs a radial basis function neural network (RBFNN), which serves to assess the dynamic security status of the power system and to estimate the effect of a corrective control action applied in the event of a disturbance. Particle swarm optimization is applied to find the optimal control action, where the objective function to be optimized is provided by the RBFNN. The method is applied on a realistic model of the Hellenic Power System and on the IEEE 50-generator test system, and its added value is shown by comparing results with the ones obtained from the application of other machine learning methods. © 2010 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Power Systems |
en |
dc.identifier.doi |
10.1109/TPWRS.2009.2031224 |
en |
dc.identifier.isi |
ISI:000285051800046 |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
1032 |
en |
dc.identifier.epage |
1041 |
en |