HEAL DSpace

A particle swarm optimization method for power system dynamic security control

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Voumvoulakis, EM en
dc.contributor.author Hatziargyriou, ND en
dc.date.accessioned 2014-03-01T01:32:29Z
dc.date.available 2014-03-01T01:32:29Z
dc.date.issued 2010 en
dc.identifier.issn 0885-8950 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20164
dc.subject Artificial intelligence en
dc.subject Corrective control en
dc.subject Dynamic security en
dc.subject Load shedding en
dc.subject Particle swarm optimization en
dc.subject Radial basis function neural network en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Added values en
dc.subject.other Automatic-learning en
dc.subject.other Corrective control en
dc.subject.other Corrective control actions en
dc.subject.other Dynamic security en
dc.subject.other Load-shedding en
dc.subject.other Machine learning methods en
dc.subject.other Objective functions en
dc.subject.other Optimal controls en
dc.subject.other Particle swarm optimization method en
dc.subject.other Power system dynamics en
dc.subject.other Power systems en
dc.subject.other Radial basis function neural networks en
dc.subject.other Realistic model en
dc.subject.other Test systems en
dc.subject.other Attitude control en
dc.subject.other Electric power systems en
dc.subject.other Learning systems en
dc.subject.other Neural networks en
dc.subject.other Optical communication en
dc.subject.other Radial basis function networks en
dc.subject.other Particle swarm optimization (PSO) en
dc.title A particle swarm optimization method for power system dynamic security control en
heal.type journalArticle en
heal.identifier.primary 10.1109/TPWRS.2009.2031224 en
heal.identifier.secondary http://dx.doi.org/10.1109/TPWRS.2009.2031224 en
heal.identifier.secondary 5291695 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract This paper proposes an automatic learning framework for the dynamic security control of a power system. The proposed method employs a radial basis function neural network (RBFNN), which serves to assess the dynamic security status of the power system and to estimate the effect of a corrective control action applied in the event of a disturbance. Particle swarm optimization is applied to find the optimal control action, where the objective function to be optimized is provided by the RBFNN. The method is applied on a realistic model of the Hellenic Power System and on the IEEE 50-generator test system, and its added value is shown by comparing results with the ones obtained from the application of other machine learning methods. © 2010 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Power Systems en
dc.identifier.doi 10.1109/TPWRS.2009.2031224 en
dc.identifier.isi ISI:000285051800046 en
dc.identifier.volume 25 en
dc.identifier.issue 2 en
dc.identifier.spage 1032 en
dc.identifier.epage 1041 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής