HEAL DSpace

A priori fluorophore distribution estimation in fluorescence imaging through application of a segmentation process and a data fitting technique

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gorpas, D en
dc.contributor.author Yova, D en
dc.contributor.author Politopoulos, K en
dc.date.accessioned 2014-03-01T01:32:31Z
dc.date.available 2014-03-01T01:32:31Z
dc.date.issued 2010 en
dc.identifier.issn 0895-6111 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/20168
dc.subject Data fitting en
dc.subject Diffusion approximation en
dc.subject Finite elements en
dc.subject Fluorescence molecular imaging en
dc.subject Image segmentation en
dc.subject.classification Radiology, Nuclear Medicine & Medical Imaging en
dc.subject.other Data fittings en
dc.subject.other Diffusion approximations en
dc.subject.other Finite Element en
dc.subject.other Fluorescence molecular en
dc.subject.other Fluorescence molecular imaging en
dc.subject.other Data handling en
dc.subject.other Digital image storage en
dc.subject.other Fluorophores en
dc.subject.other Inverse problems en
dc.subject.other Medical imaging en
dc.subject.other Medical problems en
dc.subject.other Pixels en
dc.subject.other Image segmentation en
dc.subject.other article en
dc.subject.other fluorescence imaging en
dc.subject.other image analysis en
dc.subject.other molecular imaging en
dc.subject.other priority journal en
dc.subject.other simulation en
dc.subject.other Algorithms en
dc.subject.other Diagnostic Imaging en
dc.subject.other Finite Element Analysis en
dc.subject.other Fluorescence en
dc.subject.other Image Processing, Computer-Assisted en
dc.subject.other Phantoms, Imaging en
dc.title A priori fluorophore distribution estimation in fluorescence imaging through application of a segmentation process and a data fitting technique en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compmedimag.2009.12.010 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compmedimag.2009.12.010 en
heal.language English en
heal.publicationDate 2010 en
heal.abstract During the last few years a quite large number of fluorescence imaging applications have been reported in the literature, as one of the most challenging problems in medical imaging is to "see" a tumor embedded in tissue, which is a turbid medium. This problem has not been fully encountered yet, due to the non-linear nature of the inverse problem. In this paper, a novel method for processing the forward solver outcomes is presented. Through this technique the comparison between the simulated and the acquired data can be performed only at the region-of-interest, minimizing time-consuming pixel-to-pixel comparison. With this modus operandi a-priori information about the initial fluorophore distribution becomes available, leading to a more feasible inverse problem solution. (C) 2009 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Computerized Medical Imaging and Graphics en
dc.identifier.doi 10.1016/j.compmedimag.2009.12.010 en
dc.identifier.isi ISI:000280543300004 en
dc.identifier.volume 34 en
dc.identifier.issue 6 en
dc.identifier.spage 435 en
dc.identifier.epage 445 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής