dc.contributor.author |
Gorpas, D |
en |
dc.contributor.author |
Yova, D |
en |
dc.contributor.author |
Politopoulos, K |
en |
dc.date.accessioned |
2014-03-01T01:32:31Z |
|
dc.date.available |
2014-03-01T01:32:31Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0895-6111 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/20168 |
|
dc.subject |
Data fitting |
en |
dc.subject |
Diffusion approximation |
en |
dc.subject |
Finite elements |
en |
dc.subject |
Fluorescence molecular imaging |
en |
dc.subject |
Image segmentation |
en |
dc.subject.classification |
Radiology, Nuclear Medicine & Medical Imaging |
en |
dc.subject.other |
Data fittings |
en |
dc.subject.other |
Diffusion approximations |
en |
dc.subject.other |
Finite Element |
en |
dc.subject.other |
Fluorescence molecular |
en |
dc.subject.other |
Fluorescence molecular imaging |
en |
dc.subject.other |
Data handling |
en |
dc.subject.other |
Digital image storage |
en |
dc.subject.other |
Fluorophores |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Medical imaging |
en |
dc.subject.other |
Medical problems |
en |
dc.subject.other |
Pixels |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
article |
en |
dc.subject.other |
fluorescence imaging |
en |
dc.subject.other |
image analysis |
en |
dc.subject.other |
molecular imaging |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
simulation |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Diagnostic Imaging |
en |
dc.subject.other |
Finite Element Analysis |
en |
dc.subject.other |
Fluorescence |
en |
dc.subject.other |
Image Processing, Computer-Assisted |
en |
dc.subject.other |
Phantoms, Imaging |
en |
dc.title |
A priori fluorophore distribution estimation in fluorescence imaging through application of a segmentation process and a data fitting technique |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.compmedimag.2009.12.010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compmedimag.2009.12.010 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
During the last few years a quite large number of fluorescence imaging applications have been reported in the literature, as one of the most challenging problems in medical imaging is to "see" a tumor embedded in tissue, which is a turbid medium. This problem has not been fully encountered yet, due to the non-linear nature of the inverse problem. In this paper, a novel method for processing the forward solver outcomes is presented. Through this technique the comparison between the simulated and the acquired data can be performed only at the region-of-interest, minimizing time-consuming pixel-to-pixel comparison. With this modus operandi a-priori information about the initial fluorophore distribution becomes available, leading to a more feasible inverse problem solution. (C) 2009 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computerized Medical Imaging and Graphics |
en |
dc.identifier.doi |
10.1016/j.compmedimag.2009.12.010 |
en |
dc.identifier.isi |
ISI:000280543300004 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
435 |
en |
dc.identifier.epage |
445 |
en |